a^3 b^3+c^3=3abc then a+b+c=0 or a=b=c
Prove that without using reverse method
Answers
Answered by
4
we have formula
a³+b³+c³=
(a+b+c)(a²+b²+c²-ab-bc-ca) +3abc
now if a³+b³+c³=3abc
then
(a+b+c)(a²+b²+c²-ab-bc-ca) =0
either a+b+c=0
or (a²+b²+c²-ab-bc-ca) =0
which is possible only when a=b=c
Hope this helps
a³+b³+c³=
(a+b+c)(a²+b²+c²-ab-bc-ca) +3abc
now if a³+b³+c³=3abc
then
(a+b+c)(a²+b²+c²-ab-bc-ca) =0
either a+b+c=0
or (a²+b²+c²-ab-bc-ca) =0
which is possible only when a=b=c
Hope this helps
Answered by
3
Hope This Helps You!!
Attachments:
Similar questions