Math, asked by sshovan4, 1 year ago

a^3+b^3+c^3=3abc then a+b+c=?

Answers

Answered by sejalsahu
0
Then a+b+c= 0 when
 {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc
Answered by ankurbadani84
0

Answer:

a+b+c = 3 a ( a= b= c)

Step-by-step explanation:

Consider the formula - a³ + b³ + c³- 3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))  

Now a³ + b³ + c³ = 3 abc

So,  (a+b+c) (a²+b²+c²-(ab+bc+ca))  = 0

Hence the possibility is a = b = c , so (a²+b²+c²-(ab+bc+ca)) =  a² + a²+ a² - (aa + aa + aa)

Hence a+b+c = 3 a ( a= b= c)

Similar questions