a^3+b^3+c^3
slove it
Answers
Answer:(a+b+c)^3
Step-by-step explanation:
Answer:
Step-by-step explanation:
There are mainly two forms to write the formula of a³+b³+c³
First one is
a³+b³+c³ = (a+b+c)[a²+b²+c²−ab−bc−ac]+3abc
Second one is
a³ + b³ + c³ = (a+b+c) 12[ (a−b)² + (b−c)² + (c−a)²] + 3abc
To derive these formulas, Follow these steps-
Let me first remind what is (a+b+c)²
(a+b+c)² = a²+b²+c² + 2(ab+bc+ac)(a+b+c)²= a² + b² + c² + 2(ab+bc+ac)
(a+b+c)³ = (a+b+c)² (a+b+c)
Thus after simplification we get,
(a+b+c)³ = a³ + b³ + c³ + a²(b+c) + b²(a+c) + c²(a+b) + 2(ab+bc+ac)(a+b+c)
=a³ + b³ + c³ + 3a²(b+c) + 3b²(a+c) + 3c²(a+b) + 6abc
So,
(a+b+c)³ = a³+b³+c³ + 3(a+b)(b+c)(a+c)
From the last but one step
a³+b³+c³ = (a+b+c)³ − [3a²(b+c)+3b²(a+c)+3c²(a+b)+6abc]
So,
a³ + b³ + c³ − 3abc = (a+b+c)3−[3a²(b+c)+3b²(a+c)+3c²(a+b)+9abc]
split the 9abc among the three terms and now collect ab,bcand ac terms:
=(a+b+c)³−[3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)]
take (a+b+c) as common outside,
=(a+b+c) [a²+b²+c²+2ab+2bc+2ac−3ab−3bc−3ac]
Thus we get
a³ + b³ + c³ − 3abc = (a+b+c)[a²+b²+c²−ab−bc−ac]
which may further be rewritten as
a³ + b³ + c³ − 3abc = (a+b+c)12[(a−b)²+(b−c)²+(c−a)²]
as
(a−b)²=a²+b²−2ab etc.
Most important application of this identity comes when a+b+c=0.
Clearly the RHS=0, so
a³ + b³ + c³ = 3abc
Also let me add that the sign of the expression a³ + b³ + c³ − 3abc depends purely on the sign of a+b+c, as the term multiplied along is a perfect square and is always ≥0.