Physics, asked by aarabhirani2007, 5 months ago

A 30 kg boulder was initially moving at a velocity of 10 m/s, in order to stop it 10 N of
constant retarding force is applied on it. After how long will the boulder stop?​

Answers

Answered by Anonymous
56

Answer:

The boulder will stop after 30 s.

Explanation:

Given:

  • Mass of boulder (m) = 30 kg
  • Initial velocity (u) of the boulder = 10 m/s
  • Retarding force = - 10 N

To find:

  • After how long will the boulder stop?

Solution:

Final velocity (v) = 0 m/s

We know that,

{\boxed{\sf{Force(F)=Mass(m)\times\: Acceleration (a)}}}

[ Put values ]

\implies -10 = 30×a

\implies -10 = 30a

\implies a = -⅓

Therefore, aceleration will be - ⅓ m/s².

We know that,

{\boxed{\sf{v=u+at}}}

Here,

  • v = Final velocity
  • u = Initial velocity
  • a = Acceleration
  • t = Time

[ Put values]

\implies 0 = 10 + (-⅓)×t

\implies 0 = 10 - t/3

\implies - t/3 = -10

\implies t = 30

Hence, the boulder will stop after 30 s.

_________________

Some formulas :-

★ v = u + at

★ s = ut + ½ at²

★ v² = u² + 2as

\sf{s_n=u+\dfrac{1}{2}a(2n-1)}

† [ Here, v = Final velocity , u = Initial velocity, a = Acceleration, t = Time, s = Displacement ]

Answered by Anonymous
93

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Mass \ of \ boulder = 30 \:kg}

\:\:\:\:\bullet\:\:\:\sf{Initial\: velocity= 10\:m/s}

\:\:\:\:\bullet\:\:\:\sf{Final\: velocity= 0\:m/s}

\:\:\:\:\bullet\:\:\:\sf{Retarding \ force = -10N}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\textsf{After how long will the boulder stop ?}

\\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

By using F = ma

\\

\dashrightarrow\:\: \sf{ Force = mass \times acceleration}

\\

\dashrightarrow\:\: \sf{-10=30\times a}

\\

\dashrightarrow\:\: \sf{-10=30a}

\\

\dashrightarrow\:\: \sf{a = -\dfrac{1}{3}m/s^{2}}

\\

Now, using 1st equation of motion

\\

\dashrightarrow\:\: \sf{v = u +at}

\\

\dashrightarrow\:\: \sf{0= 10-\dfrac{t}{3}}

\\

\dashrightarrow\:\: {\boxed{\bf{t = 30\:s}}}

Similar questions