Physics, asked by Anonymous, 9 months ago

A 30 litres oxygen cylinder has an initial temperature and gauge pressure of 27 0C and 20 atm respectively. When a certain amount of oxygen escapes from the cylinder the temperature and gauge pressure drops to 17 0C and 22 atm, respectively. Find the mass of oxygen that escaped the cylinder.
[R = 8.31 J mol-1 K -1, molecular mass of O2 = 32 u]​

Answers

Answered by Anonymous
15

\large{\underline{\rm{\pink{\bf{Question:-}}}}}

A 30 litres oxygen cylinder has an initial temperature and gauge pressure of \sf 28^{o} \: C and 20 atm respectively.  When a certain amount of oxygen escapes from the cylinder the temperature and gauge pressure drops to \sf 17^{o} \: C and 22 atm, respectively. Find the mass of oxygen that escaped the cylinder.

\sf [R=8.31 \: J \: mol^{-1} \: K^{-1} , \: molecular \: mass \: of \: O_2 =32u]

\large{\underline{\rm{\pink{\bf{Given:-}}}}}

Initial volume of oxygen, \sf V_1= 30 liters = \sf 30 \times 10^{-3} \: m^{3}

Gauge pressure, \sf P_1= 30, atm = \sf 30 \times 1.013 \times 10^{5} \: Pa

Temperature, \sf T_1=27^{o} \: C = 300 \: K

Universal gas constant, R = \sf 8.314 \: J \: mole^{-1} \: K^{-1}

\large{\underline{\rm{\pink{\bf{To \: Find:-}}}}}

The mass of oxygen that escaped the cylinder.

\large{\underline{\rm{\pink{\bf{Solution:-}}}}}

Let the initial number of moles of oxygen in the cylinder be \sf n_1

We know that,

\sf P_1 \: V_1 = n_1RT_1

\sf ie. \: n_1=\dfrac{P_1}{RT_1}

\sf = \dfrac{30.39 \times 10^{5} \times 30 \times 10^{-3}}{8.314 \times 300}

\sf =36.552

But,

\sf n_1=\dfrac{m_1}{M}

Where,

\sf m_1= initial mass of oxygen

M = molecular mass of oxygen = 32 g

\sf m_1=n_1 \times M=36.552 \times 32 =1169.6 \: g

After some oxygen escapes,

Volume, \sf V_2=30 \times 10^{-3} \: m^{3}

Gauge pressure, \sf P_2=22; \: atm \: =22 \times 1.013 \times 10^{5} \: Pa

Temperature, \sf T_2=17^{o} \: C=290 \: K

Let the number of moles of oxygen  left in the cylinder be \sf n_2

Now,

\sf P_2 \: V_2=n_2RT_2

\sf ie. \: n_2=\dfrac{P_2}{RT_2}

\sf = \dfrac{22.286 \times 10^{5} \times 30 \times 10^{-3}}{8.314 \times 290} =27.72

But,

\sf n_2=\dfrac{m_2}{M}

Where, \sf m_2= remaining mass of oxygen

\sf ie. \: n_2=m_2 \times M =27.72 \times 32=906.2 \: g

Therefore the mass of  oxygen that escaped the cylinder = \sf m_1-m_2=1169.6-906.2=263.4 \: g

Answered by Anonymous
1

Answer:

Inna pidicho ..

Ettan DP aayittu idu ...

Q aayittu ittala pulli dlt cheyya ....

Attachments:
Similar questions