Math, asked by ladyuuuu, 11 months ago

(a+3b+2c+6d)(a-3b-2c+6d)=(a+3b-2c-6d)(a-3b+2c-6d), prove that a:b::c:d​

Answers

Answered by KnowMore
3

LHS :-

Here, a=(a+3b+2c+6d)

b=(a-3b-2c+6d)

So, a:b=(a+3b+2c+6d):(a-3b-2c+6d)

RHS :-

Here, c=(a+3b-2c-6d)

d=(a-3b+2c-6d)

So, c:d=(a+3b-2c-6d):(a-3b+2c-6d)

LHS=RHS, so ,a:b::c:d=(a+3b+2c+6d):(a-3b-2c+6d)::(a+3b-2c-6d):(a-3b+2c-6d)

Hence, proved!

Answered by chingedichu7777777
0

Answer:

The answer is proven below!

Step-by-step explanation:

a=(a+3b+2c+6d)

b=(a-3b-2c+6d)

So, a:b=(a+3b+2c+6d):(a-3b-2c+6d)

RHS :-

Here, c=(a+3b-2c-6d)

d=(a-3b+2c-6d)

So, c:d=(a+3b-2c-6d):(a-3b+2c-6d)

LHS=RHS, so ,a:b::c:d=(a+3b+2c+6d):(a-3b-2c+6d)::(a+3b-2c-6d):(a-3b+2c-6d)

Similar questions