Math, asked by rutvi2506, 2 months ago

a^4-25b^2+30b-9, factorise​

Answers

Answered by ksantosh61762
0

Answer:

4a2−(25b2−30b+9)

\mathsf{=4a^2-((5b)^2-2{\times}5b{\times}3+3^2)}=4a2−((5b)2−2×5b×3+32)

\textsf{Using identity (1),}Using identity (1),

\mathsf{=4a^2-(5b-3)^2}=4a2−(5b−3)2

\mathsf{=(2a)^2-(5b-3)^2}=(2a)2−(5b−3)2

\textsf{Using identity (2),}Using identity (2),

\mathsf{=(2a-(5b-3))\,(2a+5b-3)}=(2a−(5b−3))(2a+5b−3)

\mathsf{=(2a-5b+3)\,(2a+5b-3)}=(2a−5b+3)(2a+5b−3)

\implies\boxed{\mathsf{4a^2-25b^2+30b-9=(2a-5b+3)\,(2a+5b-3)}}⟹4a2−25b2+30b−9=(2a−5b+3)(2a+5b−3)

\textbf{Find more:}

Answered by manojkumarhisua71
0

Answer:

hxuxhevsjskksshwogx489dvha

Similar questions