a^4+a^2+1 by a^2+a+1
Answers
Step-by-step explanation:
a^4+a^2+1
-----------------------------
a^2+a+1
a^4-2+a^2-1+1
------------------------
1
a²+a+1. a²+a+1
----------- =
1
Answer:
a^4 - ( a² +2a +1)
= a^4 - ( a+1)²
= ( a²)² - ( a+1)²
= ( a² +a+1) ( a² -a-1) ………( polynomial factors)
So, here biquadratic expression has been factorized into 2 lower degree ie quadratic factors…
Further, since the question asked is not “factorization of a polynomial” but simply factorize the given expression ..
So, ( a² +a + 1 ) can be factorized further into lower degrees,
ie, a² +a +1
= a² +2a +1 - a
= ( a+1)² - (√a)²
= ( a +1 + √a ) ( a+ 1 -√a )
So, finally , a^4 - a² -2a -1
= ( a+1+√a) ( a+1 -√a) ( a² -a -1) ………..ANS
Step-by-step explanation:
hope it is helpful