Math, asked by bachusivajyothi213, 8 months ago

a^4+b^4=(a^2+pab+b^2)(a^2-qab+b^2)then pq=

Answers

Answered by tennetiraj86
2

Answer:

answer for the given problem is given

Attachments:
Answered by Anonymous
6

\green{\bold{\underline{ ✪ UPSC-ASPIRANT✪ }}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-a^4+b^4=(a^2+pab+b^2)(a^2-qab+b^2)then pq=

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹</p><p> {a}^{4}  +  {b}^{4}  = ( {a}^{2}  + pab +  {b}^{2} )( {a}^{2}  - qab +  {b}^{2} )

⟹ </p><p> {a}^{4}  +  {b}^{4}  = { ({a}^{2} )}^{2}  +  {( {b}^{2} )}^{2}

 =   {( {a}^{2}  +  {b}^{2}) }^{2}  - 4 {a}^{2}  {b}^{2}

⟹</p><p> { ({a}^{2}  +  {b}^{2} )}^{2}  -  {(2ab)}^{2}

⟹  {a}^{4}  +  {b}^{4}  = ( {a}^{2}  +  {b}^{2}  + 2ab)( {a}^{2}  +  {b}^{2}  - 2ab)</p><p>

⟹( {a}^{2}  + 2ab +  {b}^{2} )( {a}^{2}  - 2ab +  {b}^{2} ) = ( {a}^{2}  + pab +  {b}^{2} )( {a}^{2}  - qab +  {b}^{2} )</p><p>

On comparing both sides :-

p=2. , q=2

Therefore,pq=2x^2=4

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions