Math, asked by pranjul5440, 6 months ago

A = 5+2√6 so what is the value of √a -1/√a

Answers

Answered by Anonymous
0

Answer:

in photo

Step-by-step explanation:

don't feel bad for hand writing

Attachments:
Answered by Darkrai14
1

\rm a = 5+2\sqrt{6}

\bf\dashrightarrow \sqrt{a} =\sqrt{ 5+2\sqrt{6}}

\rm\dashrightarrow \dfrac{1}{\sqrt{a}} =\dfrac{1}{\sqrt{ 5+2\sqrt{6}}}

Rationalising the denominator by its conjugate.

\rm\dashrightarrow \dfrac{1}{\sqrt{a}} =\dfrac{1}{\sqrt{ 5+2\sqrt{6}}}  \times \dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{5-2\sqrt{6}}}

We know that,

\rm\dashrightarrow \dfrac{1}{\sqrt{a}} = \dfrac{\sqrt{5-2\sqrt{6}}}{(\sqrt{ 5+2\sqrt{6}})(\sqrt{5-2\sqrt{6}})}

\rm\dashrightarrow \dfrac{1}{\sqrt{a}}= \dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{ (5+2\sqrt{6})(5-2\sqrt{6})}}

(a + b)(a - b) = a² - b²

\rm\dashrightarrow \dfrac{1}{\sqrt{a}}= \dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{ (5)^2-(2\sqrt{6})^2}}

\rm\dashrightarrow \dfrac{1}{\sqrt{a}}= \dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{ 25-24}}

\rm\dashrightarrow \dfrac{1}{\sqrt{a}}= \dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{1}}

\rm\dashrightarrow \dfrac{1}{\sqrt{a}}= \dfrac{\sqrt{5-2\sqrt{6}}}{1}

\bf\dashrightarrow \dfrac{1}{\sqrt{a}}= \sqrt{5-2\sqrt{6}}

Hence,

\rm\sqrt{a} - \dfrac{1}{\sqrt{a}} = \sqrt{ 5+2\sqrt{6}} -\sqrt{5-2\sqrt{6}} =\bf 2\sqrt{2}

Similar questions