Math, asked by chinu5552, 11 months ago

A (-5,2) and B (4,1) find the equation of the locus of point P, which is equidistant from A and B .....Help me guys​

Answers

Answered by KINGofDEVIL
108

 \huge{ \orange{ \underline{ \overline{ \boxed{ \blue{ \sf{ ANSWER}}}}}}}

 \sf{ \green{ \underline{ \underline{GIVEN : }}}}

  • A( \sf x_2, y_2) = (-5, 2)
  • B( \sf x_3, y_3)= (4, 1)
  • Point P is equidistant from A and B

 \sf{ \green{ \underline{ \underline{TO   \: \: FIND : }}}}

  • Equation of locus of point P.

 \sf{ \green{ \underline{ \underline{SOLUTION  : }}}}

  • Let the locus of point P be (h,k).
  • Also let P = ( \sf x_1, y_1) = (h, k)

As, it is given that P is equidistant from A an B.

Therefore, Length of AP = Length of BP

Using Distance formula on AP and BP

 \boxed{ \sf \: AP =  \sqrt{ {(x_1 - x_2 )}^{2} \:  +  \:  {(y_1 - y_2 )}^{2} } }

 \boxed{ \sf \: BP =  \sqrt{ {(x_1 - x_3 )}^{2} \:  +  \:  {(y_1 - y_3)}^{2} }}

 \therefore \sf{As \:  \:  AP = BP }

 \implies  \sf \:   \sqrt{ {(x_1 - x_2 )}^{2} \:  +  \:  {(y_1 - y_2 )}^{2} }  =  \sqrt{ {(x_1 - x_3 )}^{2} \:  +  \:  {(y_1 - y_3)}^{2} }

Squaring both sides we get,

 \implies  \sf \:  ({ \sqrt{ {(x_1 - x_2 )}^{2} \:  +  \:  {(y_1 - y_2 )}^{2} }})^{2}= ( {\sqrt{ {(x_1 - x_3 )}^{2} \:  +  \:  {(y_1 - y_3)}^{2} }})^{2}

 \implies  \sf \:    {(x_1 - x_2 )}^{2} \:  + {(y_1 - y_2 )}^{2}  =  {(x_1 - x_3 )}^{2} \:  +  \:  {(y_1 - y_3)}^{2}

 \implies  \sf \:    {(h - ( - 1) )}^{2} \:  + {(k -  2)}^{2}  =  {(h - 4 )}^{2} \:  +  \:  {(k - 1)}^{2}

 \implies  \sf \:    {(h  + 5)}^{2} \:  + {(k -  2)}^{2}  =  {(h - 4 )}^{2} \:  +  \:  {(k - 1)}^{2}

 \sf{   \implies \: {h}^{2}  + 25 + 10h \:  +  \:  {k}^{2} + 4  -  4k \: } =  {h}^{2} +  16  - 8h +  {k}^{2}  + 1 - 2k

 \sf{ \implies \:  \cancel{h}^{2}  + 29 + 10h \:  +  \:   \cancel{k}^{2}    -  4k \: =  \cancel {h}^{2} +  17 - 8h +   \cancel{k}^{2} - 2k}

 \sf{ \implies \:  10h \: -  4k \: + 29 =  - 8h - 2k + 17}

 \sf{ \implies \:  (10h  + 8h)\: -  (4k - 2k) \: +( 29 - 17) = 0}

 \sf{ \implies \:  18h\: - 6k\: + 12= 0}

 \sf{ \implies \:  3h\: - k\: + 2= 0}

[Putting, h --> x, k --> y]

 \boxed{ \sf{ \therefore \:  3x\: - y\: + 2= 0}}

Hence, the equation of locus of point P is 3x - y + 2 = 0

#answerwithquality # BAL

Attachments:
Answered by ITSJATINSINGH
2

Answer:

hola friend....... hello

Similar questions