A (5,3) B (3,9) C(2,-1) are 3 points.
If P Is a point such that area of the
quadrilateral PABC is 10 sq units, then the Locus of P Is?
Who Will Answer Me Correct I Will Mark Them As Brainleist
Answers
Step-by-step explanation:
Area of the ΔABC will be :
\frac{1}{2}
2
1
| 5 3 -1 |
| 3 -2 1 |
| 2 -1 1 |
= \frac{1}{2}
2
1
| ( 5 [(-2)(1) - (1)(-1)] - 3 [(3)(1) - (1)(2)] + (-1) [(3)(-1) - (-2)(2)] ) |
= \frac{1}{2}
2
1
| (5(-2+1) - 3(3-2) -1(-3+4)) |
= \frac{1}{2}
2
1
| ( -5 - 3 +1 ) |
= \frac{1}{2}
2
1
| -7 |
= \frac{7}{2}
2
7
Therefore, area of the ΔABC is \frac{7}{2}
2
7
sq. units.
Then, the area of the remaining portion, i.e,
Area of the ΔPAC = Area of the quadrilateral - Area of the ΔABC
= 10 - (7/2)
= \frac{13}{2}
2
13
sq. units
Now, to find the locus of P(x,y), equate the area of triangle PAC fomat to its area \frac{13}{2}
2
13
sq. units.
| x y 1 |
\frac{1}{2}
2
1
| 5 3 1 | = \frac{13}{2}
2
13
| 2 -1 1 |
⇒ \frac{1}{2}
2
1
| ( x [(3)(1) - (1)(-1)] - y [(5)(1) - (1)(2)] + (1) [(5)(-1) - (3)(2)] ) | = \frac{13}{2}
2
13
⇒ \frac{1}{2}
2
1
| x(3+1) - y(5-2) + 1(-5-6) | = \frac{13}{2}
2
13
⇒ \frac{1}{2}
2
1
| 4x - 3y -11 | = \frac{13}{2}
2
13
Cancelling \frac{1}{2}
2
1
on both sides, we get :
⇒ | 4x - 3y -11 | = 13
⇒ 4x - 3y -11 = ± 13
So, the equations are 4x - 3y -11 = + 13 and 4x - 3y -11 = - 13, and the locus will be :
⇒ ( 4x - 3y -11 )² = (+13)(-13)
⇒ 16x² + 9y² + 2(4x)(-3y) + 2(4x)(-11) + 2(-3y)(-11) + (-11)² = -169
⇒ 16x² + 9y² - 24xy - 88x + 66y + 121 + 169 = 0
∴ 16x² + 9y² - 24xy - 88x + 66y + 290 = 0
Therefore, the locus of point P(x,y) is
16x² + 9y² - 24xy - 88x