Physics, asked by Abdida4094, 10 months ago

A 5 cm tall object is placed in front of a convex lens of focal length 20 cm at a distance 30 cm from the lens. Find the position, size of the image and magnification. 3 points

Answers

Answered by Anonymous
66

Figure refer to attachment

\Large{\bf{\underline{\underline{\blue{Given}}}}}

  • Height of the object (ho) = + 5cm
  • Focal length (f) = + 20cm
  • Object distance (u) = - 30cm

\Large{\bf{\underline{\underline{\blue{Find\:out}}}}}

  • Find the position, size of the image and magnification

\Large{\bf{\underline{\underline{\blue{Solution}}}}}

Apply lens formula

\implies\sf \dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f} \\ \\ \\ \implies\sf \dfrac{1}{v}=\dfrac{-1}{30}+\dfrac{1}{20} \\ \\ \\ \implies\sf \dfrac{1}{v}=\dfrac{-2+3}{60} \\ \\ \\ \implies\sf \dfrac{1}{v}=\dfrac{1}{60} \\ \\ \\ \implies\sf v=+60cm

  • Image distance = +60cm

Now,

\implies\sf m=\dfrac{v}{u}=\dfrac{h_i}{h_o} \\ \\ \\ \implies\sf \dfrac{v}{u}=\dfrac{h_i}{h_o} \\ \\ \\ \implies\sf \dfrac{-60}{30}=\dfrac{-h_i}{5} \\ \\ \\ \implies\sf -2=\dfrac{h_i}{5} \\ \\ \\ \implies\sf h_i=-10cm

  • Size of image = -10cm

________________________________

\implies\sf Magnification =\dfrac{v}{u} \\ \\ \\ \implies\sf m=\dfrac{60}{-30} \\ \\ \\ \implies\sf m=-2

  • Magnification = -2

_________________________

  • Nature of image
  • Nature = Real and inverted
  • Size = Enlarged
  • Position = Beyond 2F₂
Attachments:
Answered by AdorableMe
52

ANSWER←

  • Position : Beyond C₂
  • Magnification : -2
  • Size : Enlarged
  • Nature : Real & inverted

\rule{190}3

\rule{190}3

\rule{190}3

GIVEN

A 5 cm tall object is placed in front of a convex lens of focal length 20 cm at a distance 30 cm from the lens.

\bullet\ \sf{h_o=5\ cm}

\bullet\ \sf{f=20\ cm}

\bullet\ \sf{u=-30\ cm}

\rule{190}3

TO FIND

The position, size and the magnification of the image.

\rule{190}3

SOLUTION

We know the LENS FORMULA :-

\boxed{\sf{\ddag\:\: \frac{1}{v}-\frac{1}{u}=\frac{1}{u}   }}

Substituting the known values :--

\displaystyle{\sf{\dashrightarrow \frac{1}{v}-\frac{1}{-30} = \frac{1}{20}  }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}+\frac{1}{30}=\frac{1}{20}   }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}=\frac{1}{20}-\frac{1}{30}   }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}=\frac{3-2}{60}  }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}=\frac{1}{60}  }}\\\\\boxed{\displaystyle{\sf{\dashrightarrow v=60\ cm}}}

→ Therefore, the image is formed 60 cm on the right side of the lens.(Beyond the C₂)

\rule{190}{1.9}

We also know,

\boxed{\displaystyle{\sf{\ddag\:\: Magnification=\frac{v}{u}  }}}

Substituting the known values :-

\displaystyle{\sf{\dashrightarrow m=\frac{60}{-30} }}\\\\\boxed{\displaystyle{\sf{\dashrightarrow m=\frac{-2}{1} =-2}}}

→ The magnification is -2.

→ Therefore, the image is real and inverted for the magnification is negative.

\rule{190}{1.9}

As we know that,

\boxed{\displaystyle{\sf{\ddag\:\: \frac{v}{u}=\frac{h_i}{h_o}   }}}

Substituting the known values :-

\displaystyle{\sf{\dashrightarrow \frac{60}{-30}=\frac{h_i}{5}  }}\\\\\displaystyle{\sf{\dashrightarrow -2=\frac{h_i}{5} }}\\\\\displaystyle{\sf{\dashrightarrow h=-2\times5}}\\\\\boxed{\displaystyle{\sf{\dashrightarrow h_i=-10\ cm}}}

h\sf{_i} > h\sf{_o} in magnitude. So the image is enlarged.

Similar questions