Physics, asked by kambojharsh379, 10 months ago

A 5 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 20cm the distance of the object from the lens is 30 cm determine the size of the image formed *

+60cm
+10cm
-60cm
-10cm

Answers

Answered by Brâiñlynêha
13

Given :-

Height of object= 5cm

Focal length (f) = +20

Object distance (u)= -30

To find :-

Size of image formed

  • First find the distance of image (v)

By lens formula

\boxed{\sf{ \dfrac{1}{f}= \dfrac{1}{v}-\dfrac{1}{u}}}

\longrightarrow\sf \dfrac{1}{20}= \dfrac{1}{v}-\dfrac{1}{-30}\\ \\ \longrightarrow\sf \dfrac{1}{20}+\dfrac{1}{-30}= \dfrac{1}{v}\\ \\ \longrightarrow\sf \dfrac{1}{20}-\dfrac{1}{30}= \dfrac{1}{v}\\ \\ \longrightarrow\sf \dfrac{3-2}{60}=\dfrac{1}{v}\\ \\ \longrightarrow\sf \dfrac{1}{60}=\dfrac{1}{v}\\ \\ \longrightarrow\sf v= {\boxed{\sf\ 60\ cm}}

Now we have to find the size of image

According to formula

\boxed{\sf\  m= \dfrac{v}{u}= \dfrac{h_i}{h_o}}

\longrightarrow\sf \dfrac{v}{u}= \dfrac{h_i}{h_o}\\ \\ \longrightarrow\sf \cancel{\dfrac{60}{-30}}= \dfrac{h_i}{5}\\ \\ \longrightarrow\sf -2\times 5= h_i\\ \\ \longrightarrow\sf -10= h_i\\ \\ \longrightarrow\sf h_i = {\boxed{\sf\ -10cm}}

  • Correct option is 4

\underline{\boxed{\sf\ \ size \ of \ image = -10cm}}

Answered by Anonymous
18

\mathcal{\huge{\underline{\underline{\red{QUESTION ?}}}}}

✒ A 5 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 20cm the distance of the object from the lens is 30 cm determine the size of the image formed ?

  • +60cm
  • +60cm+10cm
  • +60cm+10cm-60cm
  • +60cm+10cm-60cm-10cm

\mathfrak{\huge{\underline{\underline{\green{ANSWER:-}}}}}

☑ The option D {-10 cm} is correct answer.

\mathbb{\huge{\underline{\underline{\blue{SOLUTION:-}}}}}

Given :-

Height of object (h) = 5cm

Focal length (f) = +20 cm

Object distance (u)= -30 cm

To find :-

The size of image formed by the lens.

Calculation :-

The distance of image v by :-

 \dfrac{1}{f}  =  \dfrac{1}{v}  -  \dfrac{1}{u}

 =>  \dfrac{1}{20}  =  \dfrac{1}{v}  -  \dfrac{1}{ - 30}

  = >  \dfrac{1}{20}   +   \dfrac{1}{ - 30}  =  \dfrac{1}{v}

 = >  \dfrac{1}{20}  -  \dfrac{1}{30}  =  \dfrac{1}{v}

 =>  \dfrac{3 - 2}{60}  =  \dfrac{1}{v}

 =>  \dfrac{1}{60}  =  \dfrac{1}{v}

 = > v \:  = 60cm

But, size of image is left to be found

m =  \dfrac{v}{u}  =  \dfrac{hi}{ho}

  =>  \dfrac{ - 60}{30}  =  \dfrac{hi}{5}

 =>  - 2 \times 5 = hi

 = >  - 2 \times 5 = hi

=> hi = -10 cm

So , The height of image is -10 cm.

______________________________________

Similar questions