Math, asked by gautamikhaire14, 7 months ago

a^5+x^5÷ a^5-x^5= 122÷121
use properties of proportion to find x

Answers

Answered by shruti13845
12

Answer:

here your answer

Step-by-step explanation:

hope it help ☺☺

Attachments:
Answered by payalchatterje
0

Answer:

Required value of x is  \frac{a}{3}

Step-by-step explanation:

Given,

 \frac{ {a}^{5} +  {x}^{5}  }{ {a}^{5} -  {x}^{5}  }  =  \frac{122}{121}

By componendo and dividendo property of proportion,

 \frac{({a}^{5} +  {x}^{5}) + ({a}^{5}  -   {x}^{5})}{({a}^{5} +  {x}^{5}) - ({a}^{5}  -   {x}^{5})}  =  \frac{122 + 121}{122 - 121}  \\   \frac{{a}^{5} +  {x}^{5} +{a}^{5}  -   {x}^{5} }{{a}^{5} +  {x}^{5} - {a}^{5} +  {x}^{5}}  =  \frac{243}{1}  \\  \frac{2 {a}^{5} }{2 {x}^{5} }  = 243

 \frac{ {a}^{5} }{ {x}^{5} }  =  {3}^{5}  \\  { (\frac{a}{x}) }^{5}  =  {3}^{5}  \\  \frac{a}{x}  = 3 \\ x =  \frac{a}{3}

So, required value of x is

 \frac{a}{3}

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ3

Similar questions