Physics, asked by Simarna, 7 months ago

A 500-kg artificial satellite is revolving around the
earth at a height of 1800 km from the earth. Find out
the potential energy, kinetic energy and total energy
of the satellite. The earth's radius is 6400 km and
g=10m/s^2
Ans. - 2.5 x 1010 J, 1.25 x 1010 J,- 1.25 x 1010 J.

Answers

Answered by nilesh102
10

Given data:-

Here,

—› Mass of artificial satellite = m

—› Mass of earth = M (5.972 × 10^24 kg )

—› Gravitational constant = G (6.673 × 10^-11 Nm²/kg²)

—› Radius of earth = R

—› Height of artificial satellite = h

Now, {from que}

—› m = 500 kg

—› R = 6400 km

—› h = 1800 km

Solution:-

We use formulae to find the potential energy, kinetic energy and total energy.

Now, Let,

—› Potential energy = P.E

—› kinetic energy = K.E

—› Total energy = T.E

Here, we calculate,

  {\bf{\dashrightarrow{ \pink{ {GMm  }}} }}

{ \tt{ \small{ = 6.673 \times {10}^{ - 11}   \times 5.972 \times  {10}^{24} \times 500 }}}

{ \tt{ = 1.9925578 \times  {10}^{17} \: N {m}^{2}  } \:  \:  \:  \: ....(1)}

and

  {\bf{\dashrightarrow{ \small{ \pink{ { R + h }}} { \tt{ = 6400 + 1800 = 8200}}} \: m \:  \:  \:  \: ......(2)}}

Now, from eq. ( 1 ) & eq. ( 2 )

{ \dashrightarrow{ \bf{ \pink{ \frac{GMm}{R + h}  =  \frac{ 1.9925578 \times  {10}^{17} }{8200}  }}}}

{ \bf{ \pink{ = 2.429948537 \times {10}^{13} \: Nm }}}

OR

{ \bf{ \small {\pink{ = 2.43 \times {10}^{13} \: Nm }} \:  \: (approx) \: \:  \:  \:  ..... \: (3)}}

Now, From eq. ( 3 )

{ \bf{ \small{ \dashrightarrow{P.E \:  Of  \: Satellite{ \:  =  \pink{   - \frac{GMm}{R + h} }}}}}}

{ \bf{ \small{ \dashrightarrow{P.E \:  Of  \: Satellite{ \:  =  \pink{   - 2.43 \times {10}^{13}J}}}}}}

Now,

{ \bf{ \small{ \dashrightarrow{K.E \:  Of  \: Satellite{ \:  =  \pink{    \frac{GMm}{2(R + h)} }}}}}}

{ \bf{ \small{ \dashrightarrow{K.E \:  Of  \: Satellite{ \:  =  \pink{   \frac{- 2.43 \times {10}^{13}}{2} }}}}}}

{ \bf{ \small{ \dashrightarrow{K.E \:  Of  \: Satellite{ \:  =  \pink{    - 1.215\times {10}^{13} \: J}}}}}}

Now,

{ \bf{ \small{ \dashrightarrow{T.E \:  Of  \: Satellite{ \:  =  \pink{     - \frac{GMm}{2(R + h)} }}}}}}

{ \bf{ \small{ \dashrightarrow{T.E \:  Of  \: Satellite{ \:  =  \pink{   -  (\frac{- 2.43 \times {10}^{13}}{2}) }}}}}}

{ \bf{ \small{ \dashrightarrow{T.E \:  Of  \: Satellite{ \:  =  \pink{     1.215\times {10}^{13} \: J}}}}}}

Hope it helps you.

Similar questions