Physics, asked by Pranjal74721, 10 months ago

A 500kg car which was initially at rest traveled with an acceleration of 5m sec rise to power -2 its kinetic energy after 4 second was_ (using the formular for kinetic energy

Answers

Answered by ShivamKashyap08
27

Correct Question:

A 500 Kg car which was initially at rest traveled with an acceleration of 5 m/sec² .Its kinetic energy after 4 second was (using the formula for kinetic energy)

Answer:

  • Kinetic Energy (K.E) is 100 Kilo Joules.

Given:

  1. Mass of the Car (M) = 500 Kg.
  2. Acceleration of the Car (a) = 5 m/sec².
  3. Time Period (T) = 4 Second.

Explanation:

\rule{300}{1.5}

Applying First Kinematic Equation.

\large \star \;{\boxed{\bold{v = u + at}}}

\bold{Here}\begin{cases}\text{v Denotes Final velocity} \\ \text{u Denotes Initial velocity} \\ \text{a Denotes Acceleration} \\ \text{t Denotes Time taken}\end{cases}

\large{\boxed{\tt v = u + at}}

Substituting the Values.

\large{\tt \hookrightarrow v = 0 + 5 \times 4}

\large{\tt \hookrightarrow v = 5 \times 4}

\large{\hookrightarrow {\underline{\underline{\tt v = 20 \; m/s}}}}

\rule{300}{1.5}

\rule{300}{1.5}

From Kinetic energy,

\large\star \; {\boxed{\bold{K.E = \dfrac{1}{2}Mv^2}}}

\bold{Here}\begin{cases}\text{M Denotes Mass} \\  \text{v Denotes Final Velocity}\end{cases}

\large{\boxed{\tt K.E = \dfrac{1}{2} Mv^2}}

Substituting The values,

\large{\tt \hookrightarrow K.E = \dfrac{1}{2} \times 500 \times (20)^2}

\large{\tt \hookrightarrow K.E = \dfrac{1}{2} \times 500 \times 400}

\large{\tt \hookrightarrow K.E = \dfrac{1}{\cancel{2}} \times 500 \times \cancel{400}}

\large{\tt \hookrightarrow K.E = 1 \times 500 \times 200}

\large{\tt \hookrightarrow K.E = 1 \times 100000}

\large{\tt \hookrightarrow K.E = 100000}

\huge{\boxed{\boxed{\tt K.E = 100 \; KJ}}}

Kinetic Energy of The car is 100 Kilo Joules.

\rule{300}{1.5}

Answered by Anonymous
8

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

\large \tt Given \begin{cases} \sf{Mass \: of \: Car \: (m) \: = \: 5000 \: kg}  \\  \sf{Acceleration \: (a) \: = \: 5 \: ms^{-2}} \\  \sf{Time \: interval \: (T) \: = \: 4 \: s}  \end{cases}

_____________________________

To Find :

Kinetic Energy

_____________________________

Solution :

Use Formula :

v = u + at

where,

  • v is final velocity
  • u is initial velocity
  • a is acceleration t is time interval

Put Values ,

\large \rightarrow {\sf{v \: = \: 0 \: + \: (5)(4)}}

\large \rightarrow {\sf{v \: = \: 20 \: ms^{-1}}}

\Large \leadsto {\underline{\boxed{\sf{v \: =  \: 20 \: ms^{-1}}}}}

______________________________

Now use formula for Kinetic Energy :

\LARGE{\underline{\boxed{\sf{K.E \: = \: \frac{1}{2} \: mv^2}}}}

Put Values

⇒K.E = ½ * 500 * (20)²

⇒K.E = ½*500*400

⇒K.E = ½*200000

⇒K.E = 100000

\Large \leadsto {\underline{\boxed{\sf{K.E \: = \: 100 \: KJ}}}}

_____________________________

#answerwithquality

#BAL

Similar questions