Math, asked by gauthamnambiar, 6 months ago

a
57. A is the set of all non-zero complex numbers of the form a + ib. The binary operation * is defined such
that Z1 * Z2 = Z1 Z2 where Z1, Z2 €A. The inverse of a +ib is

A) a -ib

B) a - i b
______ ______
a^2 + b^2 a^2 + b^2

C) a + i b
______ ______
a^2 + b^2 a^2 + b^2

D) 1 + i0

E) 2 + i0

Answers

Answered by RizwanaAfreen
4

Given:

A is the set of all non-zero complex numbers of the form a + ib. The binary operation * is defined such

that Z1 * Z2 = Z1 Z2 where Z1, Z2 €A

To Find:

The inverse of a +ib

Solution:

let z be a complex number,  z^{-1} be the inverse of z

Let z^{-1}= u+ iv be the inverse of z= a+ i b

We have,  zz^{-1} = 1

That is ,

            ( a+ i b)( u +  iv )  = 1

     (au - bv)   + i (av+ub)  = 1+ i0

Equating real and imaginary parts we get

Real part          :   au -bv  =  1

Imaginary part :  av + ub = 0

Solving the above system of simultaneous equations in u and v

we get,

       u=\frac{a}{a^{2} +b^{2} }     &    v=\frac{-b}{a^{2} +b^{2} }                      (z is non-zero⇒{a^{2} +b^{2} }> 0  )

If z =a+ ib , then

 z^{-1} =    \frac{a}{a^{2} +b^{2} }+i   \frac{-b}{a^{2} +b^{2} }                                 (  z^{-1}is not defined when z = 0 )

The inverse of a+ib is   \frac{a}{a^{2} +b^{2} }+i   \frac{-b}{a^{2} +b^{2} }    

Answered by tiwariakdi
1

Given:

A is the set of all non-zero complex numbers of the form a + ib. The binary operation * is defined such

that Z1 * Z2 = Z1 Z2 where Z1, Z2 €A

To Find:

The inverse of a +ib

Solution:

let z be a complex number, z^{-1}  be the inverse of z

Let = u+ iv be the inverse of z= a+ i b

We have,  zz^{-1}=1

That is ,

= > ( a+ i b)( u +  iv )  = 1\\ = > (au - bv)   + i (av+ub)  = 1+ i0

Equating real and imaginary parts we get

Real part          :   au -bv  =  1

Imaginary part :  av + ub = 0

Solving the above system of simultaneous equations in u and v

we get,

 u=\frac{a}{a^{2}+b^{2}  }        &      v=\frac{-b}{a^{2}+b^{2}  }                    (z is non-zero⇒ 0  )

If z =a+ ib , then

z^{-1}=\frac{a}{a^{2}+b^{2}  }+i\frac{-b}{a^{2} +b^{2} }                                   ( z^{-1} is not defined when z = 0 )

The inverse of a+ib is z^{-1}=\frac{a}{a^{2}+b^{2}  }+i\frac{-b}{a^{2} +b^{2} }

#SPJ3  

Similar questions