Physics, asked by prachikammaliu79, 6 months ago

A 5cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 20cm. the distance of the object from the lens is 30cm. Find the (i) position (ii) nature (iii) size of the image formed

Answers

Answered by Anonymous
95

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\sf{h_{o}= 5cm }

\:\sf{u = -30cm }

\:\sf{f= 20cm }

 \\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\sf{v \:= \:? }

\:\sf{h_{i} \: = \: ?}

 \\

{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

{\sf{ Using \ lens \ formula \ \dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u} }}⠀⠀⠀⠀⠀

\\

{\mathrm{\underline{\:\:We\:have\:\:}}}

\\

\dashrightarrow\:\: \sf{\dfrac{1}{v}=\dfrac{1}{f}-\dfrac{1}{u}}

 \\

\dashrightarrow\:\: \sf{\dfrac{1}{20} + \dfrac{1}{-30}=\dfrac{1}{60}}

 \\

\dashrightarrow \:\:\sf{ v = 60cm}

 \\

\star\:\sf{Magnification\:\dfrac{v}{u}=\dfrac{60}{-30}=-2}

\\

{\boxed{\rm{\blue{Magnification\:=\:\dfrac{Image\:size}{Object\:size}}}}}

\\

\dashrightarrow\:\: \sf{\dfrac{h_{i}}{h_{o} = -2}}

 \\

\dashrightarrow\:\: \sf{\dfrac{h_{i}}{5}= -2}

 \\

\dashrightarrow\:\: \sf{ h_{i} = -2\times 5}

 \\

\sf{\dashrightarrow\:\:  {h_{i} = -10cm}}

 \\

{\green{\checkmark}}\:\sf\underline{The\:image\:is\:real\: inverted\:and\: magnified}

Similar questions