Math, asked by Adhya455, 9 months ago

A 5m wide cloth is used to make a conical tent of Base diameter 14m and height 24m find the cost of the cloth used at the rate of Rs 25per meter

Answers

Answered by Anonymous
7

\large{\underline{\bf{\red{Given:-}}}}

  • ✦ Radius (r) = 14/2 = 7m

  • ✦ Height (h) = 24m

\large{\underline{\bf{\red{To\:Find:-}}}}

✦ cost of the cloth used at the rate of Rs 25/m

\huge{\underline{\bf{\purple{Solution:-}}}}

  \blue{ \bf\:slant \: height \: of \: tent \:  (l) =  \sqrt{ {r}^{2}  +  {h}^{2} } }\:\\

 \mapsto  \rm\: \sqrt{ {7}^{2} +  {24}^{2}  }  \\  \\ \mapsto  \rm\: \sqrt{49 + 576} \\  \\\mapsto  \rm\: \sqrt{625}  \\  \\\mapsto  \bf\:25m \\\\  \:

 \mapsto \blue{  \bf\:CSA \: of \: cone \:  =  \pi \: rl}\\\\

 \mapsto  \rm \frac{22}{7}  \times 7 \times 25 \\  \\\mapsto  \rm22 \times 25 \\  \\\mapsto  \bf550 {m}^{2}   \\  \\

Let x meter cloth is required:-

 \mapsto  \rm \pink{\:CSA \: of \: tent=area \: of \: cloth} \\  \\ \mapsto  \rm\:5x = 550 \\  \\ \mapsto  \rm\:x =  \frac{550}{5}  \\  \\\mapsto  \bf \pink{\:x = 110} \\

So,

110 m cloth is required.

 \mapsto  \rm\:Cost \: of \: cloth=\:25 \times 110 \\  \\\mapsto  \rm  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  = 2750   \\  \\ \mapsto  \bf \green{\:Cost \: of \: cloth=2750}\\\\

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Cost \ of \ cloth \ used \ is \ Rs \ 2750}

\sf\ornge{Given:}

\sf{For \ cloth,}

\sf{\implies{Breadth (b)=5 \ m}}

\sf{\implies{Cost \ of \ cloth =Rs \ 25 \ per \ metre}}</p><p>[tex]\sf{For \ cone,}

\sf{\implies{Diameter (d)=14 \ m}}

\sf{\implies{Height (h)=24 \ m}}

\sf\pink{To \ find:}

\sf{Cost \ of \ cloth \ used.}

\sf\green{\underline{\underline{Solution:}}}

\sf{For \ cone,}

\sf{Radius(r)=\frac{Diameter (d)}{2}}

\sf{Radius(r)=\frac{14}{2}}

\sf{Radius (r)=7 \ cm}

\sf{Slant \ height (l)=\sqrt{r^{2}+h^{2}}}

\sf{...formula}

\sf{\therefore{l=\sqrt{7^{2}+24^{2}}}}

\sf{l=\sqrt{49+576}}

\sf{l=\sqrt{625}}

\sf{l=25 \ cm}

\sf{Curved \ surface \ area=\pi\times \ r \ h}

\sf{...formula}

\sf{Curved \ surface \ area=\frac{22}{7}\times7\times25}

\sf{\therefore{Curved \ surface \ area=550 \ m^{2}}}

\sf{\therefore{550 \ m^{2} \ of \ cloth \ is \ required}}

__________________________________

\sf{Area \ of \ cloth \ required=length\times \ breadth}

\sf{...formula}

\sf{550=Length\times5}

\sf{Length=\frac{550}{5}}

\sf{\therefore{Length=110 \ m}}

\sf{Cost \ of \ cloth \ per \ metre=Rs \ 25}

\sf{\therefore{Cost \ of \ 110 \ metre \ of \ cloth}}

\sf{=110\times25}

\sf{=Rs \ 2750}

\sf\purple{\tt{\therefore{Cost \ of \ cloth \ used \ is \ Rs \ 2750}}}

Similar questions