Math, asked by rajnikaul13, 7 months ago

(a) 5x - 11 = 3x + 9 (b) 3y + 4 = 7 - 2y (c) 9 - 2(x - 5) = x + 10 (d) 5(y - 1) = 3(2y - 5) - (1 - 3y) (e) 2(x - 1) - 6x = 10 - 2(x - 4) (f) x/3 - (x - 2)/2 = 7/3

Answers

Answered by amankumaraman11
1

 \orange{1.)} \:  \:  \:  \rm5x - 11 = 3x + 9 \\ \tt  \to5 x- 3x =  9+ 11 \\  \tt \to2x = 20 \\ \tt  \to x  = \frac{20}{2}  \:  \:  = \red{ 10}

 \orange{2.)} \:  \:  \rm3y + 4 = 7 - 2y \\  \tt \to3y + 2y = 7 - 4 \\  \tt \to5y = 3 \\  \tt \to y  =  \red{\frac{3}{5} } \:  \:  \: or \:  \:  \: \red{0.6}

 \orange{3.) } \: \:  \:  \rm9 - 2(x - 5) = x + 10 \\  \tt \to9 - 2x + 10 = x + 10 \\  \tt \to \:  \:  - 2x + 19 = x + 10 \\  \tt \to \:  \:  \:  - 2x - x = 10 - 19 \\  \tt \to \:  \:  \cancel- 3x =  \cancel - 9 \\  \tt \to \: 3x = 9 \\  \tt \to \:x =  \frac{9}{3}  \:  \:  \:  \:  =  \red3

 \small \orange{4.) }\:  \: \rm  \: 5(y - 1) = 3(2y - 5) - (1 - 3y) \\ \tt \to5y - 5 = 6y - 15 - 1 + 3y  \\  \tt \to5y - 5 = (6 + 3)y - 16 \\  \tt \to5y - 5 = 9y - 16 \\  \tt \to5y - 9y  =  \: - 16 + 5 \\  \tt \to \:  \:  \cancel - 4y  \: =  \: \cancel - 11 \\ \tt \to \:  \: 4y = 11 \\ \tt \to \:  \: y =   \red{\frac{11}{4} } \:  \:  \:  \: or  \:  \:  \:  \:  \red{2.75}

 \small \orange{5.)}  \:  \:  \:  \rm2(x - 1) - 6x = 10 - 2(x - 4) \\ \tt \to2x - 2 - 6x = 10 - 2x + 8   \\  \tt \to(2 - 6)x - 2 = 18 - 2x \\ \tt \to - 4x - 2  = 18 - 2x \\  \tt \to - 4x + 2x = 18 + 2 \\  \to \tt - 2x = 20 \\  \tt \to \:x =  \frac{20}{ - 2}   \:  \: =  \red{ - 10}

 \rm  \orange{6.)} \:  \:  \:  \frac{x}{3}  -  \frac{x - 2}{2}  =  \frac{7}{3}  \\ \small \boxed{ \rm{}taking \:  \: LCM \:  \: of \:  \: denominators \:  \: in \:  \:LHS}  \\  \to \tt \frac{2(x) - 3(x - 2)}{6}  =  \frac{7}{3}  \\  \\  \to \tt 2x - 3x + 6 =  \frac{\cancel6 \times 7}{ \cancel3}  \\  \\  \to \tt - x + 6 = 2 \times 7 \\  \to \tt - x + 6 = 14 \\  \to \tt - x = 14 - 6 \\  \to \tt - x = 8 \\ \small \boxed{ \rm{}Multiplying \:  \:  both \:  \:  sides \:  \:  by \:  \:  (- 1)  }  \\ \to \tt ( - x)( - 1) = 8( - 1) \\   \to \tt  \:  \:  x  \: =  \red{ - 8}

Similar questions