Math, asked by sheikhoronna, 2 months ago

a=√6+√5,p+q=6,pq=3 then find the
value of p5+q5=4806​

Answers

Answered by vishesh2031
1

Answer:

I hope you can take help from this process

Step-by-step explanation:

Using the identity is (a+b)3=a3+b3+3ab(a+b)

Consider,

(p+q)3=p3+q3+3pq(p+q)

 

It is given that p+q=5 and pq=6, therefore,

(p+q)3=p3+q3+3pq(p+q)⇒(5)3=p3+q3+(3×6)(5)⇒125=p3+q3+(18×5)⇒125=p3+q3+90⇒p3+q3=125−90⇒p3+q3=35

Hence, p3+q3=35.

Answered by unknown2429
0

Answer:

4086

Step-by-step explanation:

Using the given data and binomial theorem, we get,

a =  \sqrt{6}  +  \sqrt{5}  \\ p + q = 6 \:  \:  \: pq = 3

 {(p + q)}^{5}  =  \binom{5}{0}  \times  {p}^{5}  +  \binom{5}{1}  \times  {p}^{4}  \times q +  \binom{5}{2}   \times  {p}^{3} \times  {q}^{2}  +  \binom{5}{3}  \times   {p}^{2}  \times {q}^{3}  +  \binom{5}{4}   \times p \times  {q}^{4} +  \binom{5}{5}  \times  {q}^{5}  \\  =  {p}^{5}  + 5 {p}^{4}q  + 10 {p}^{3}  {q}^{2}  + 10 {p}^{2}  {q}^{3}  + 5p {q}^{4}  +  {q}^{5}  = ( {p}^{5}  +  {q}^{5} ) + 5pq( {p}^{3}  + 2 {p}^{2}q + 2p {q}^{2}   +  {q}^{3} ) \\  =  > {6}^{5}  = ( {p}^{5}  +  {q}^{5} ) + 5 \times3  \times (( {p}^{3}  +  {q}^{3} ) + 2pq(p + q)) \\  =  >  {p}^{5}  +  {q}^{5}  =  {6}^{5}  - 15 (( {p}^{3}  +  {q}^{3} ) + 2 \times 3 \times 6)

Now, we have to find p^3+q^3. To do this, we apply binomial theorem with index 3 or the commnoly know as (a+b)^3 formula.

 {(p + q)}^{3}  =  {p}^{3}  +  3 {p}^{2} q + 3p {q}^{2}  +  {q}^{3}  \\  = ( {p}^{3} +  {q}^{3}  ) + 3pq(p + q) \\  =  >  {6}^{3}  =  {p}^{3}  +  {q}^{3}  + 3  \times 3 \times 6 \\  =  >  {p}^{3}  +  {q}^{3}  =  {6}^{3}  - 6 \times 9 = 216 - 54 = 162

Inserting this value in the initial equation we get,

 {p}^{5}  +  {q}^{5}  =  {6}^{5}  - 15 \times (162  + 36) \\  =  {6}^{5}  - 15 \times 198 = 7776 - 2970  \\  =  >  {p}^{5}  +  {q}^{5}  = 4806

Hope this helps you. PLEASE MARK ME AS THE BRAINLIEST.

Similar questions