Math, asked by ASHITA789, 1 month ago

A(-6,p), B(10,6) and C(30,q) and 3 collinear points. also 4q+5p=k. find the value of k.​

Answers

Answered by mathdude500
3

Given :-

Following three points are collinear,

  • A (- 6, p)

  • B(10, 6)

  • C(30, q).

and

  • 4q + 5p = k

To Find :-

  • The value of k

Solution :-

Given that

Following three points are collinear,

  • A (- 6, p)

  • B(10, 6)

  • C(30, q).

We know,

Condition for 3 points to be collinear is given by

\rm :\longmapsto\:x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) = 0

Here,

 \rm :\longmapsto\:x_1 =  - 6

 \rm :\longmapsto\:y_1 =  p

 \rm :\longmapsto\:x_2 =  10

 \rm :\longmapsto\:y_2 =  6

 \rm :\longmapsto\:x_3 = 30

 \rm :\longmapsto\:y_3 = q

Thus,

On substituting the values, we get

\rm :\longmapsto\: - 6(6 - q) + 10(q - p) + 30(p - 6) = 0

\rm :\longmapsto\: - 36  + 6q+ 10q -10 p+ 30p - 180= 0

\rm :\longmapsto\:20p + 16q - 216 = 0

\rm :\longmapsto\:4(5p + 4q - 54) = 0

\rm :\longmapsto\:5p + 4q - 54= 0

\rm :\longmapsto\:k - 54= 0 \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \{ \because \: 5p + 4q = k \}

\bf\implies \:k = 54

Additional Information :-

Section Formula :-

\rm :\longmapsto\: \:( x, y) =  \bigg(\dfrac{mx_2 +  nx_1}{m +  n}  , \dfrac{my_2  + ny_1}{m  +  n}  \bigg)

Midpoint Formula :-

\rm :\longmapsto\: \: ( x, y) =  \bigg(\dfrac{x_1+x_2}{2}  , \dfrac{y_1+y_2}{2}  \bigg)

Area of triangle :-

\rm :\longmapsto\:\ Area =\dfrac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

Distance Formula :-

\rm :\longmapsto\: \:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

Similar questions