A 6-volt battery of negligible internal resistance is connected across a uniform wire AB of length 100 cm. The positive terminal of another battery of emf 4 V and internal resistance 1 Ω is joined to the point A, as shown in the figure (32-E28). Take the potential at B to be zero. (a) What are the potentials at the points A and C? (b) At which point D of the wire AB, the potential is equal to the potential at C? (c) If the points C and D are connected by a wire, what will be the current through it? (d) If the 4 V battery is replaced by a 7.5 V battery, what would be the answers of parts (a) and (b)?
Figure
Answers
Answered by
2
Explanation:
a) Potential difference between A and B is 6 V. B is at 0 potential. Thus potential of A point is 6 V. The potential difference between Ac is 4 V. VA – VC = 0.4 VC = VA – 4 = 6 – 4 = 2 V. b) The potential at D = 2V, VAD = 4 V ; VBD = OV Current through the resisters R1 and R2 are equal. c) When the points C and D are connected by a wire current flowing through it is 0 since the points are equipotential. d) Potential at A = 6 v Potential at C = 6 – 7.5 = –1.5 V The potential at B = 0 and towards A potential increases.
Similar questions