Math, asked by subudhijagan1234, 1 year ago

A=60 , B=30
find, sin(A-B) = sinA cosB-cosA SinaB​

Answers

Answered by mustafa3952
2

Answer:

____________________________

\sin(60 + 30) = \sin(30) \times \cos(60) + \cos(30) \times \sin(60) \\ \sin(90) = 1 \div 2 \times 1 \div 2 + \sqrt{3} \div 2 \times \sqrt{3} \div 2 \\ 1 = 1 \div 4 + 3 \div 4 \\ 1 = 1 \\ \\ also \: \cos( 90) = \cos(30) \times \ \cos(60) - \sin(30) \times \sin(60) \\ \cos(90) = \sqrt{3} \div 2 \times 1 \div 2 - 1 \div 2 \times \sqrt{3} \div 2 \\ 0 = 0

_______________

Answered by monishnakade00
1

Step-by-step explanation:

sin(30)=sin60cos30-cos60sin30

=√3/2.1/2-1/2-1/2

=√3/2.1/2

=√3/2=60 degree

Similar questions