Math, asked by Rashikant, 7 months ago


A 63 liter mixture contains milk and water in a ratio of 4: 5. Then x liters of milk and y liters of water are added to the mixture, resulting in
60 ters of the mixture are drained and replaced with 60 liters of water, resulting in a milk to water ratio of 7:8 What is the value of x+y ?

Answers

Answered by adventureisland
0

Given:

The 63 liter mixture contains milk and water in a ratio of 4:5 resulting in 60liters of the mixture are drained and replaced with60 liters of water, resulting in a milk to water ratio of 7:8.

To find:

The resulting in a milk the value of x+y.

Step-by-step explanation:

4p+5p=63

p=7

initially milk is 28 liters and water is 35 liters

z=x+y

The final volume is (63+z)

The volume of water before and after the last step.

\frac{5}{12}(3+z)+60=\frac{8}{15}(63+z)

z=x+y=237

Answer:

Therefore, The resulting in a milk of the value of x+y=237.

Similar questions