Math, asked by sunilkumar111193, 11 months ago

a=√7+2√12,b=√7-2√12 than(a^3+b^3)​

Answers

Answered by LovelyG
16

Answer:

\large{\underline{\boxed{\sf a {}^{3}  +  {b}^{3}  = 302 \sqrt{7}}}}

Step-by-step explanation:

Given that -

  • a = √7 + 2√12
  • b = √7 - 2√12

Now, find the value of (a + b)-

⇒ a + b = √7 + 2√12 + √7 - 2√12

⇒ a + b = √7 + √7

⇒ a + b = 2√7

Also, find the value of (ab)-

⇒ ab = (√7 + 2√12)(√7 - 2√12)

⇒ ab = (√7)² - (2√12)²

⇒ ab = 7 - 48

⇒ ab = -41

Consider (a + b)-

 \implies \sf a + b = 2 \sqrt{7}  \\  \\ \bf on \: cubing \: both \: sides :  \\  \\ \implies \sf (a + b) {}^{3}  =  {(2 \sqrt{7})}^{3}  \\  \\ \implies \sf a {}^{3}  +  {b}^{3} + 3ab(a + b) = 56 \sqrt{7}  \\  \\ \implies \sf a {}^{3}  +  {b}^{3} +3( - 41)(2 \sqrt{7} ) = 56 \sqrt{7}  \\  \\ \implies \sf a {}^{3}  +  {b}^{3}  - 246 \sqrt{7}  = 56 \sqrt{7}  \\  \\ \implies \sf a {}^{3}  +  {b}^{3}  = 56 \sqrt{7}  + 246 \sqrt{7}  \\  \\ \boxed{ \bf \therefore \:  a {}^{3}  +  {b}^{3}  = 302 \sqrt{7}}


sunilkumar111193: don't match ans.
Answered by sparkle0072
6
Hope it helps u..........
Attachments:
Similar questions