Math, asked by Sowmikareddy9818, 1 year ago

a=7-4√3 find the value of a+1/a

Answers

Answered by MOSFET01
9

Given : a = 7-4√3

To Find :  a\: + \: \dfrac{1}{a}

Solution :

 \dfrac{1}{a}\: = \: \dfrac{1}{7-4\sqrt{3}}

 \dfrac{1}{a}\: = \: \dfrac{1}{7-4\sqrt{3}}\times\dfrac{7+4\sqrt{3}}{7+4\sqrt{3}}

 \dfrac{1}{a}\: = \: \dfrac{7+4\sqrt{3}}{(7)^{2}-(4\sqrt{3})^{2}}

 \dfrac{1}{a}\: = \: \dfrac{7+4\sqrt{3}}{49-(16\times3)}

 \dfrac{1}{a}\: = \: \dfrac{7+4\sqrt{3}}{49-48}

 \dfrac{1}{a}\: = \: \dfrac{7+4\sqrt{3}}{1}

\dfrac{1}{a} \: = \: 7 \: + \: 4\sqrt{3}

 a\: + \: \dfrac{1}{a} \: = \: ?

Put the values of a , 1/a

 a\: + \: \dfrac{1}{a} \: = \: 7\:-\:4\sqrt{3} \: + \: 7\: + \: 4\sqrt{3}

 \boxed{a\: + \: \dfrac{1}{a} \: = \: 14}

Similar questions