Math, asked by rpv101012, 1 year ago

a = (7 - √5)/(7+√5) and b = (7+√5)/(7-√5) find a^2+b^2

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
a =  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  \\  \\ on \: ratonalizing \: we \: get \\  \\  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  \times  \frac{7 -  \sqrt{5} }{7 -  \sqrt{5} }  \\  \\  using \: identities \\  {(a - b)}^{2}  =  {(a)}^{2}  +  {(b)}^{2}  - 2ab \\  (a + b)(a - b) =  {(a)}^{2}  -  {(b)}^{2}  \\  \\  =   \frac{ {(7)}^{2} +  {( \sqrt{5}) }^{2}   - 2 \times 7 \times  \sqrt{5} }{ {(7)}^{2}  -  {( \sqrt{5}) }^{2} }  \\  \\  =  \frac{49 + 5 - 14 \sqrt{5}  }{49 - 5}  \\  \\  =  \frac{54 - 14 \sqrt{5} }{44}  \\  \\  a=  \frac{27 - 7 \sqrt{5} }{22}  \\  \\ b =  \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  \times  \frac{7 +  \sqrt{5} }{7 +  \sqrt{5} }  \\  \\  =  \frac{ {(7)}^{2} +  {( \sqrt{5} )}^{2}   + 2 \times 7 \times  \sqrt{5} }{ {(7)}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\  =  \frac{49 + 5 + 14 \sqrt{5} }{49 - 5}  \\  \\  =  \frac{54 + 14 \sqrt{5} }{44}  \\  \\  =  \frac{27 + 7 \sqrt{5} }{22}  \\  \\  {a}^{2}  +  {b}^{2}  \\  \\  =  {( \frac{27  -  7 \sqrt{5} }{22} )}^{2}  +  {( \frac{27 + 7 \sqrt{5} }{22} )}^{2}  \\  \\  using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\  \\  =(  {( \frac{27}{22} )}^{2}  +  {( \frac{7 \sqrt{5} }{22}) }^{2}  - 2 \times  \frac{27}{22}  \times  \frac{7 \sqrt{5} }{22} ) \\  + ( {( \frac{27}{22}) }^{2}  +  {( \frac{7 \sqrt{5} }{22}  )}^{2}  + 2 \times  \frac{27}{22}  \times  \frac{7 \sqrt{5} }{22} ) \\  \\  =  (\frac{729}{484} ) +  \frac{245}{484}  -  \frac{189 \sqrt{5} }{242} ) \\  + ( \frac{729}{484}  +  \frac{245}{484}  +  \frac{189 \sqrt{5} }{242} ) \\  \\  =  \frac{729}{484}  +  \frac{245}{484}    -   \frac{189 \sqrt{5} }{242}  +  \frac{729}{484}   \\ +  \frac{245}{484}   +   \frac{189 \sqrt{5} }{242}  \\  \\  =  \frac{729}{484}  +  \frac{245}{484}  +  \frac{729}{484}  +  \frac{245}{484}  \\  \\  =  \frac{729 + 729 + 245 + 245}{484}  \\  \\  =  \frac{1948}{484}  \\  \\  =  \frac{487}{121}  \\  \\  = 4.02 \: (approx)

Hope this helps!!!

@Mahak24

Thanks...
☺☺

rpv101012: Thanx.
DaIncredible: my pleasure :)
Similar questions