a=7 , l=49 , Sn =420 find d
Answers
Answered by
2
Answer:
first term(f)=7
last term(l)=49
common difference=d
n(number of terms)=n
sn(sum)=420
sn=
\begin{gathered} \frac{n}{2} (f+l) \\ \\ 420= \frac{n}{2}(7+49) \\ \\ 840=n*56 \\ 56n=840 \\ n= \frac{840}{56}=15\end{gathered}
2
n
(f+l)
420=
2
n
(7+49)
840=n∗56
56n=840
n=
56
840
=15
number of terms=15
n=
\begin{gathered} \frac{l-f}{d}+1 \\ \\ 15= \frac{49-7}{d}+1 \\ \\ 15= \frac{42}{d} +1 \\ \\ 14= \frac{42}{d} \\ \\ 14d=42 \\ d= \frac{42}{14}=3 \end{gathered}
d
l−f
+1
15=
d
49−7
+1
15=
d
42
+1
14=
d
42
14d=42
d=
14
42
=3
common difference=3
Answered by
1
Answer:
Step-by-step explanation:
sn=n/2(a+l)
420=n/2(7+49)
420=n/2(56)
420=n(28)
n=420/28
n=15
Similar questions