Physics, asked by Isamar0109, 4 months ago

A 70 kg man is being pulled to safety by a rope over a dangerous pit of alligators. If the tension in the rope is 800 N, what is the acceleration and the direction on the man?

Answers

Answered by itzcutiemisty
12

Answer:

1.62 m/s²

Explanation:

\underline{\bigstar\:\textsf{Given:}}

  • Mass (m) = 70 kg
  • Tension in the rope (T) = 800 N

\underline{\bigstar\:\textsf{To\:find:}}

  • Acceleration (a) = ?

\underline{\bigstar\:\textsf{Solution:}}

We know, in the cases of pulling a rope the \blue{\sf{Tension\:=\:mg\:+\:ma}}

Here, we know the mass (m), acceleration due to gravity (g) as 9.8 m/s²and the tension (T), we've to find acceleration (a).

\:\:\:\::\implies 800 = 70 × (9.8 + a)

\:\:\:\::\implies\:\sf{\dfrac{800}{70}\:=\:9.8\:+\:a}

\:\:\:\::\implies\:\sf{11.42\:=\:9.8\:+\:a}

\:\:\:\::\implies\sf{11.42\:-\:9.8\:=\:a}

\:\:\:\::\implies\:\sf{1.62\:=\:a}

\:\:\:\:\small:\implies\underline{\boxed{\sf\purple{a\:=\:1.62\:m/s^2}}}

Answered by shaktisrivastava1234
32

 \huge \fbox  {\fbox{\red{Answer}}}

 \large \fbox{Given:}

 \sf \longrightarrow{Mass \: of \: man(m) = 70kg}

 \sf \longrightarrow{Tension \: in \: the \: rope(T) = 800N}

 \large \fbox{To \: find:}

 \sf \leadsto{Acceleration of \: man(a).}

 \large \fbox{Formula used:}

 \sf \mapsto{Tension = mg + ma}

 \large \fbox{Concept used:}

  \sf\longmapsto{Acceleration \: due \: to \: gravity \: is \: 9.8m/ {s}^{2}.}

 \large \fbox{According to Question:}

 \sf \implies{Tension = mg + ma}

\sf \implies{800 N= (70kg)(9.8m /{s}^{2} ) + (70kg)(a)}

\sf \implies{800 N= 70kg(9.8m /{s}^{2} + a)}

\sf \implies{ \frac{800 N}{70} =  (9.8m /{s}^{2}  + a)}

 \sf \implies{11.42 N = 9.8m /{s}^{2}  + a}

 \sf \implies{ {11.42 } - {9.8m /{s}^{2}} = a}

 \sf \implies{ {1.62m /{s}^{2}} = a}

\boxed{ \bf{Acceleration \:  of  \: man \:  is  \: 1.62m/{s}^{2}.}}

Similar questions