Physics, asked by lalit4286, 8 months ago

A 75 kg box is dropped from the top of a tower. The height of the tower is 35 m. Calculate (i) the initial
potential energy of the box, (ii) its potential energy 15 m above the ground, (iii) the maximum value of
its kinetic energy and (iv) its kinetic energy 20 m below the top of the tower. (g = 9.8 m/s2)
(g = 9.8 m/s2)​

Answers

Answered by DrNykterstein
35

Given :-

  • A 75 kg box is dropped from the top of a tower of height 35 m.
  • Acceleration due to gravity, g = 9.8 m/

To Find :-

  • Initial potential energy.
  • Potential energy 15 m above the ground.
  • Maximum value of kinetic energy
  • Kinetic energy 20 m below the top of the tower.

Solution :-

First, Let us find the Initial potential energy at the top of the tower,

⇒ PE = mgh

⇒ PE = 75 × 9.8 × 35

⇒ PE = 25,725 J

____________________________

Here, We have

  • Height, h = 15 m above the ground.
  • g = 9.8 m/s²
  • mass = 75 kg

⇒ PE = mgh

⇒ PE = 75 × 9.8 × 15

⇒ PE = 11,025 J

____________________________

Maximum value of the kinetic energy will be at the very bottom of the tower ( touching the ground ) where all the potential energy will be converted into Kinetic energy (According to law of conservation of energy)

So,

⇒ Maximum Kinetic energy = PE at the top of tower

⇒ Maximum Kinetic energy = 25,725 J

____________________________

Here, we have to find the kinetic energy 20 m below the top of the tower.

Let's find the potential energy at this point, we have

  • Height, h = 35 - 20 = 15 m
  • g = 9.8 m/s²
  • mass = 75 kg

So,

⇒ PE = mgh

⇒ PE = 75 × 9.8 × 15

⇒ PE = 11,025 J

But, The total kinetic energy should be 25,725 J including the kinetic energy, according to the law of conservation of energy,

⇒ Total energy = PE + KE

⇒ 25,725 = 11,025 + KE

⇒ KE = 25,725 - 11,025

KE = 14,700 J

Answered by Anonymous
173

Given :

  • Mass of the box = 75 kg

  • Height of the tower = 35 m

To find :

  • 1. The initial energy of the box

  • 2. Its potential energy 15 m above the ground

  • 3 . The maximum value of its kinetic energy

  • 4. Its kinetic energy 20 m below the top of the tower

So , now first find the velocity of the box at the height of 35 m and 35 - 20 = 15 m.

First at 35 m :

 \sf :  \implies \:  \:  \: \:  \:  {\sqrt{2 \times 9.8 \times 35}} \\  \\  \sf :  \implies \:  \:  \: \:  \:  \:  {\sqrt{19.6\times 35}} \\  \\ \sf :  \implies \:  \:  \: \:  \:  \:  {\sqrt{686}} \\  \\ \sf :  \implies \:  \:  \: \:  \:  \: 26.195

Now , at 15 m :

</p><p>\sf :  \implies \:  \:  \: \:  \:  \:{\sqrt{2 \times 9.8 \times 15}} \\  \\ \sf :  \implies \:  \:  \: \:  \:  \:{\sqrt{19.6 \times 15}}  \\  \\ \sf :  \implies \:  \:  \: \:  \:  \:{\sqrt{294}}  \\  \\  \sf :  \implies \:  \:  \: \:  \:   \: 17.146

Number 1 :

 \boxed{ \sf \:  \:  \:  \:  \:  \: PI  = mgh \:  \:  \:  \:  \:  \: }

Substitute all Values :

\sf :  \implies \:  \:  \: \:  \:   \:{PI=75kg \times 9.8m/s \times 35m} \\  \\ </p><p></p><p>\sf :  \implies \:  \:  \: \:  \:   \:{PI=735 \times 35} \\  \\ </p><p></p><p> \sf :  \implies \:  \:  \: \:  \:   \:{PI=25725J} \\

So , Initial potential energy is 25725 joules.

___________________________________

Number 2 :

 \boxed{ \sf \:  \:  \:  \:  \:  \: pe = mgh \:  \:  \:  \:  \:  \: }

Substitute all values :

\sf :  \implies \:  \:  \: \:  \:   \:{Pe=75kg \times 9.8m/s \times 15m} \\  \\ \sf :  \implies \:  \:  \: \:  \:  </p><p>{Pe=735 \times 15m} \\  \\ </p><p></p><p>\sf :  \implies \:  \:  \: \:  \:  Pe =11025 \\

So , the potential energy at 15 m above the ground is 11025 joules .

___________________________________

Number 3 :

 \boxed{ \sf \:  \:  \:  \:  \:  \: Ke =  \frac{1}{2}m {v}^{2}   \:  \:  \:  \:  \:  \: }

Substitute all values :

\sf :  \implies \:  \:  \: \:  \:   Ke=\frac{1}{2} \times 75kg \times 26.195 \\  \\ </p><p>\sf :  \implies \:  \:  \: \:  \:  Ke=37.5kg \times 26.195 \: \\  \\  \sf :  \implies \:  \:  \: \:  \:  Ke=37.5kg \times 686 \\  \\ </p><p></p><p>\sf :  \implies \:  \:  \: \:  \:  Ke=25725j \:  \\ </p><p></p><p>

So , the maximum kinetic energy is 25725 joules .

___________________________________

Number 4 :

 \boxed{ \sf \:  \:  \:  \:  \:  \: Ke =  \frac{1}{2}m {va}^{2}   \:  \:  \:  \:  \:  \: }

Substitute all values :

\sf :  \implies \:  \:  \: \:  \:Ke=\frac{1}{2} \times 75kg \times 17.146 \\  \\ </p><p></p><p>\sf :  \implies \:  \:  \: \:  \:Ke=37.5kg \times 17.146 \\  \\ </p><p></p><p>\sf :  \implies \:  \:  \: \:  \:Ke=11025J \:  \\  \\ </p><p>

So , Kinetic energy below the 20 m of the tower is 11025 joules .

Similar questions