Math, asked by psheoran005, 2 months ago

(a)
8.If a4 + a2b2 +b4 = 8 and a2 + ab + b2 = 4, then the value of ab is
यदि a4 + a2b2 + b4 = 8 और a2 + ab + b2 = 4, तो ab का मान है।
(a) -1 (b) 0
(c) 2
1
43.13+03-3abc
(d)​

Answers

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{ {a}^{4}+{a}^{2} {b}^{2}+{b}^{4} = 8} \\ &\sf{ {a}^{2} + ab +  {b}^{2} = 4} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{value \: of \: ab}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{\red{\sf\: {x}^{2} -  {y}^{2} + (x + y)(x - y)}}

\boxed{\red{\sf\: {x}^{2}  + 2xy +  {y}^{2}  =  {(x + y)}^{2}}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {a}^{2}  + ab +  {b}^{2}  = 4 -  -  - (1)

and

\rm :\longmapsto\: {a}^{4}  +  {a}^{2}  {b}^{2}  +  {b}^{4}  = 8

\rm :\longmapsto\: {a}^{4}  +  {a}^{2}  {b}^{2}  +  {b}^{4}  +  {a}^{2} {b}^{2} -  {a}^{2} {b}^{2}= 8

\rm :\longmapsto\: {a}^{4}+  {b}^{4}  +  2{a}^{2} {b}^{2} -  {a}^{2} {b}^{2}= 8

\rm :\longmapsto\: {\bigg(  {a}^{2} +  {b}^{2}  \bigg) }^{2} -  {(ab)}^{2}   = 8

\rm :\longmapsto\:( {a}^{2} +  {b}^{2}  + ab)( {a}^{2} +  {b}^{2}  - ab) = 8

\rm :\longmapsto\:4( {a}^{2} +  {b}^{2}  - ab) = 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\red{\sf\:using \: (1)}}

\rm :\longmapsto\:{a}^{2} +  {b}^{2}  - ab=2

\rm :\longmapsto\:4 - ab  - ab=2 \:  \:  \:  \: \:  \:  \:  \:  \boxed{\red{\sf\:using \: (1)}}

\rm :\longmapsto\:4 - 2ab = 2

\rm :\longmapsto\:2ab = 4 - 2

\rm :\longmapsto\:2ab = 2

\bf\implies \:ab = 1

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions