Math, asked by veeresalingam, 7 months ago

A
97. If tan A = 1 and tan B = 13; evaluate :
mi) cos A cos B - sin A sin B
(ii) sin A cos B + cos A sin B
98
A hoor​

Attachments:

Answers

Answered by Aryan0123
1

 \sf{ \tan(a)  = 1} \\  \implies \sf{a =  \tan {}^{ - 1} (1) } \\  \implies \underline{ \sf{a = 45 \degree}}

 \\  \sf{ \tan(b) =  \sqrt{3}  } \\  \implies \sf{b =  \tan {}^{ - 1} ( \sqrt{3} ) } \\  \implies \underline{  \sf{b = 60 \degree}}

  • cosA . cosB - sinA . sinB

⇒cos45° × cos60° - sin45° × sin60°

 \implies \sf{ \frac{1}{ \sqrt{2}  } \times  \frac{1}{2} -  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  }    \\  \\  \implies \sf{ \frac{1}{2 \sqrt{2} }  -  \frac{ \sqrt{3} }{2 \sqrt{2} } } \\  \\  =  \frac{1 -  \sqrt{3} }{2 \sqrt{2}  }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\  \\ \implies  \boxed{ \sf{   \frac{ \sqrt{2 } -  \sqrt{6}  }{4}  }}

  • sinA . cosB + cosA . sinB

⇒sin45° × cos60° + cos45°. sin60°

 \implies \sf{ \frac{1}{ \sqrt{2} }  \times  \frac{1}{2} +  \frac{1}{ \sqrt{2} }   \times  \frac{ \sqrt{3} }{2} } \\  \\  \implies \frac{1 +  \sqrt{3} }{2 \sqrt{2}  }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\  \\  \implies \boxed{ \sf{  \frac{ \sqrt{2} +  \sqrt{6}  }{4}  } }

Similar questions