A(a,0),B(-a,0),C(c,0) are three points. The equation of the locus of a point P such that PA^2 + PB^2 = 2PC^2 is........
Answers
Answered by
1
Answer:
x=a^2 -c^2/2c
Step-by-step explanation:
A(a,0
B(-a,0)
C(c,0)
let P(x,y)
distance between two points (x1,y1),(x2,y2)=√(x2-x1)^2+(y2-y1)^2
PA=√(a-x)^2+(y)^2
PB=√(-a-x)^2+(y)^2
PC=√(c-x)^2+(y)^2
PA^2 + PB^2 = 2PC^2
(√(a-x)^2+(y)^2)+(√(-a-x)^2+(y)^2)=2(√(c-x)^2+(y)^2)^2
(a-x)^2+(y)^2+(-a-x)^2+(y)^2)=2((c-x)^2+(y)^2)^2
a^2+x^2-2ax+y^2 a^2+x^2+2ax+y^2=2(c^2+x^2-2cx+y^2)
a^2+x^2-2ax+y^2 a^2+x^2+2ax+y^2=2c^2+2x^2-4cx+2y^2
2a^2+2x^2+2y^2 =2c^2+2x^2-4cx+2y^2
2a^2 =2c^2-4cx (taking 2 as common)
a^2 =c^2-2cx
2cx=a^2 -c^2
x=a^2 -c^2/2c
Similar questions
Social Sciences,
3 months ago
Social Sciences,
3 months ago
Social Sciences,
3 months ago
Math,
7 months ago
English,
7 months ago
Environmental Sciences,
11 months ago