Math, asked by uday8168, 1 year ago

a(a^2+2)/3 is an integer prove it by induction​

Answers

Answered by shadowsabers03
2

\dfrac{a(a^2+2)}{3}

It is a fraction. To get it as an integer, the numerator of the fraction should be exactly divisible by the denominator, i.e., a(a^2+2) should be exactly divisible by 3.

Hence we have only to prove that,

\large \textsf{$a(a^2+2)$ is exactly divisible by $3$ for any $a\geq 1$}

Let a=1

a(a^2+2)=1(1^2+2)=1(1+2)=1\times 3=3\\ \\ \textsf{Here,}\ \ 3 \mid\ a(a^2+2)\\ \\ \therefore\ \dfrac{a(a^2+2)}{3}\ \ \texttt{is an integer.}

Let a=k

Assume that 3 \mid\ k(k^2+2)

Let a=k+1

\begin{aligned}&a(a^2+2)\\ \\ \Longrightarrow\ \ &(k+1)((k+1)^2+2)\\ \\ \Longrightarrow\ \ &(k+1)(k^2+2k+1+2)\\ \\ \Longrightarrow\ \ &(k+1)(k^2+2+2k+1)\\ \\ \Longrightarrow\ \ &(k+1)(k^2+2)+(k+1)(2k+1)\\ \\ \Longrightarrow\ \ &k(k^2+2)+k^2+2+(k+1)(2k+1)\\ \\ \Longrightarrow\ \ &k(k^2+2)+k^2+2+2k^2+3k+1\end{aligned}

\begin{aligned}\Longrightarrow\ \ &k(k^2+2)+3k^2+3k+3\\ \\ \Longrightarrow\ \ &k(k^2+2)+3(k^2+k+1)\end{aligned}

Here, we have assumed earlier that 3\mid\ k(k^2+2). To this, 3(k^2+k+1), which is also a multiple of 3, is added.

\therefore\ 3\mid\ a(a^2+2)\\ \\ \Longrightarrow\ \dfrac{a(a^2+2)}{3}\ \ \textsf{is an integer.}

Hence Proved!!!

Similar questions