a√a+b√b =183 a√b+b√a =182 find 9÷5(a+b)
Anonymous:
Which class q is this ?
Answers
Answered by
17
Hey Mate !
Here is your solution :
Given,
=> a√a + b√b = 182 ----------- ( 1 )
________________________
=> a√a + b√b = 183 -------- ( 2 )
=> (√a )³ + (√b )³ = 183
_________________________
Using identity :
=> ( x³ + y³ ) = ( x + y )³ - 3xy( x + y )
__________________________
=> (√a +√b )³ - 3 √a ×√b (√a + √b ) = 183
=> (√a +√b )³ - 3a√b - 3b√a = 183 -----( 3 )
Taking out ( -3 ) as common ,
=> (√a +√b )³ - 3( a√b + b√a ) = 183
=> (√a +√b )³ - 3 × 182 = 183
=> (√a +√b )³ - 546 = 183
=> (√a + √b )³ = 183 + 546
=> (√a + √b )³ = 729
=> (√a + √b )³ = ( 9 )³
As exponent is equal , so base must be equal,
•°• (√a + √b ) = 9 -------- ( 4 )
Squaring both sides ,
=> ( √a + √b )² = ( 9 )²
__________________________
Using identity :
=> ( a + b )² = a² + b² + 2ab
__________________________
=> (√a )² + (√b )² + 2 √a × √b = 81
=> a + b + 2√ab = 81 ---------- ( 5 )
Continuing the ( 3 ),
=> ( √a + √b )³ - 3a√b - 3b√a = 183
Taking out { -3√(ab) } as common,
=> ( √a + √b )³-{ 3√( ab )} (√a + √b ) = 183
Substituting the value of ( 4 ),
=> ( 9 )³ - { 3√( ab ) } ( 9 ) = 183
=> 729 - 27√( ab ) = 183
=> 729 - 183 = 27√( ab )
=> 546 = 27√( ab )
=> 546 ÷ 27 = √( ab )
=> 182 / 9 = √( ab ) -------- ( 6 )
By substituting the value of ( 6 ) in ( 5 ),
=> a + b + 2√( ab ) = 81
=> ( a + b ) + 2 ( 182 / 9 ) = 81
=> ( a + b ) + ( 364 / 9 ) = 81
=> ( a + b ) = 81 - ( 364 / 9 )
=> ( a + b ) = ( 729 - 364 ) / 9
=> ( a + b ) = ( 365 / 9 ) ---------- ( 7 )
Now,
= ( 9/5 ) ( a + b )
By putting the value of ( 7 ),
= ( 9/5 ) ( 365 / 9 )
= [ ( 365 × 9 ) / ( 5 × 9 ) ]
= 73
Hence, the required answer is 73.
==============================
Hope it helps !! ^_^
Here is your solution :
Given,
=> a√a + b√b = 182 ----------- ( 1 )
________________________
=> a√a + b√b = 183 -------- ( 2 )
=> (√a )³ + (√b )³ = 183
_________________________
Using identity :
=> ( x³ + y³ ) = ( x + y )³ - 3xy( x + y )
__________________________
=> (√a +√b )³ - 3 √a ×√b (√a + √b ) = 183
=> (√a +√b )³ - 3a√b - 3b√a = 183 -----( 3 )
Taking out ( -3 ) as common ,
=> (√a +√b )³ - 3( a√b + b√a ) = 183
=> (√a +√b )³ - 3 × 182 = 183
=> (√a +√b )³ - 546 = 183
=> (√a + √b )³ = 183 + 546
=> (√a + √b )³ = 729
=> (√a + √b )³ = ( 9 )³
As exponent is equal , so base must be equal,
•°• (√a + √b ) = 9 -------- ( 4 )
Squaring both sides ,
=> ( √a + √b )² = ( 9 )²
__________________________
Using identity :
=> ( a + b )² = a² + b² + 2ab
__________________________
=> (√a )² + (√b )² + 2 √a × √b = 81
=> a + b + 2√ab = 81 ---------- ( 5 )
Continuing the ( 3 ),
=> ( √a + √b )³ - 3a√b - 3b√a = 183
Taking out { -3√(ab) } as common,
=> ( √a + √b )³-{ 3√( ab )} (√a + √b ) = 183
Substituting the value of ( 4 ),
=> ( 9 )³ - { 3√( ab ) } ( 9 ) = 183
=> 729 - 27√( ab ) = 183
=> 729 - 183 = 27√( ab )
=> 546 = 27√( ab )
=> 546 ÷ 27 = √( ab )
=> 182 / 9 = √( ab ) -------- ( 6 )
By substituting the value of ( 6 ) in ( 5 ),
=> a + b + 2√( ab ) = 81
=> ( a + b ) + 2 ( 182 / 9 ) = 81
=> ( a + b ) + ( 364 / 9 ) = 81
=> ( a + b ) = 81 - ( 364 / 9 )
=> ( a + b ) = ( 729 - 364 ) / 9
=> ( a + b ) = ( 365 / 9 ) ---------- ( 7 )
Now,
= ( 9/5 ) ( a + b )
By putting the value of ( 7 ),
= ( 9/5 ) ( 365 / 9 )
= [ ( 365 × 9 ) / ( 5 × 9 ) ]
= 73
Hence, the required answer is 73.
==============================
Hope it helps !! ^_^
Similar questions