A={a,b,c,e,f,h} B={c,d,e,f}and C={a,b,c,f} verify n(AUBUC)=n(A)+n(B)+n(C)-n(AintesectionB)-n(BintersectionC)-n(AintersectionC)+n(AINTERSECTIONBINTERSECTIONC)
Answers
Answer: The verification is done below.
Step-by-step explanation: We are given the following three sets :
A={a,b,c,e,f,h}
B={c,d,e,f}
and
C={a,b,c,f}.
We are to verify that
n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C).
We have
n(A) = 6, n(B) = 4 and n(C) = 4.
Now,
A∪B∪C = {a,b,c,e,f,h} ∪ {c,d,e,f} ∪ {a,b,c,f} = {a, b, c, d, e, f, h}.
So, L.H.S. = n(A∪B∪C) = 7.
A∩B = {a,b,c,e,f,h} ∩ {c,d,e,f} = {c, e, f} ⇒ n(A∩B) = 3,
B∩C = {c,d,e,f} ∩ {a,b,c,f} = {c, f} ⇒ n(B∩C) = 2,
A∩C = {a,b,c,e,f,h} ∩ {a,b,c,f} = {a, b, c, f} ⇒ n(A∩C) =4,
A∩B∩C = {a,b,c,e,f,h} ∩ {c,d,e,f} ∩ {a,b,c,f} = {c, f} ⇒ n(A∩B∩C) = 2.
So,
R.H.S.
= n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)
= 6 + 4 + 4 - 3 - 2 - 4 + 2
= 16 - 9
= 7.
Therefore, L.H.S. = R.H.S.
Hence verified.