Math, asked by kamalakannan22061, 1 year ago

a(a+c) -b(b+c) factorise using identies

Answers

Answered by shishirsaroj62406
17

Answer:

(a-c) [(a+b)-c]

Step-by-step explanation:

a²+ac-b²-bc

a²-b²+ac-bc

a²-b²=(a+b)(a-b)

(a+b)(a-b)+c(a-b)

(a-b)[(a+b)-c]

Answered by pulakmath007
9

a(a + c) - b(b + c) = (a - b) (a + b + c)

Given :

The expression a(a + c) - b(b + c)

To find :

Factorise the expression

Formula :

a² - b² = ( a + b ) ( a - b )

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

a(a + c) - b(b + c)

Step 2 of 2 :

Factorise the expression

We use the formula a² - b² = ( a + b ) ( a - b )

\displaystyle \sf{ a(a + c) -b(b + c)  }

\displaystyle \sf{  =  {a}^{2} + ac -  {b}^{2}   - bc }

\displaystyle \sf{  =  {a}^{2} -  {b}^{2}   + ac - bc }

\displaystyle \sf{  =  (a + b)(a - b) + c(a - b) }

\displaystyle \sf{  =  (a  -  b)(a  +  b + c)  }

Similar questions