Math, asked by himusantosh123, 7 months ago

A
A car moning with a speed of 72 lemph, applies
Break for 5 seconds. After 5 seconds, the speed of
(ar 18 kmph Calculate the auleration
the car​

Answers

Answered by Anonymous
9

Correct Question :

➥ A car moving with a speed of 72kmph applies brakes for 5 seconds. After 5 seconds, the speed of a car is 18 kmph, Calculate the acceleration of the car.

Answer :

➥ The acceleration of a car = -3 m/s

Given :

➤ Intial velocity of a car = 72 km/hr

➤ Final velocity of a car = 18 km/hr

➤ Time taken by a car = 5 sec

To Find :

➤ Acceleration of a car = ?

Required Solution :

To find the acceleration of a car, first we need to convert the Intial velocity and final velocity km/hr to m/s. To convert multiply the speed by 5/18, then after we will find the acceleration of a car.

◈ Initial velocity = 72

→ Intial velocity = 72 × 5/18

→ Intial velocity = 4 × 5

→ Intial velocity = 20 m/s

◈ Final velocity = 18

→ Final velocity = 18 × 5/18

→ Final velocity = 1 × 5

→ Final velocity = 5 m/s

Now, we have Intial velocity, final velocity, and it's time taken by a car.

  • Intial velocity of a car = 20 m/s
  • Final velocity of a car = 5 m/s
  • Time taken by a car = 5 sec

We can find Acceleration of a car by using the first equation of motion which says v = u + at.

Here,

  • v is the final velocity in m/s.
  • u is the intial velocity in m/s.
  • a is the acceleration in m/s².
  • t is the time taken in second.

✎ So let's calculate Acceleration (a) !

⇛ v = u + at

⇛ 5 = 20 + a × 5

⇛ 5 = 20 + 5a

⇛ 5 - 20 = 5a

⇛ -15 = 5a

⇛ -15/5 = a

⇛ -3 = a

⇛ a = -3 m/s

Hence, the acceleration of car is -3 m/s².

\:

Some related equations :

⪼ First equation of motion: v = u + at

⪼ Second equation of motion: s = ut + ½ at²

⪼ Third equation of motion: v² = u² + 2as

Where,

  • v is the final velocity in m/s.
  • u is the intial velocity in m/s.
  • a is the acceleration in m/s².
  • t is the time taken second.
  • s is the distance in m.

━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
2

Answer:

\tiny\qquad\qquad \qquad  \large\dag \:   \red{\underline{\tt Given:}} \\

  • Initial velocity (u) = 72 km/hr

  • Final velocity (v) = 18 km/hr

  • Time (t) = 5 seconds

\qquad\tiny \dag\: \underline{\tt First \:  of  \: all \:  we \:  will  \: convert  \: all  \: the  \: given  \: units  \: of \:  km/hr \:  in \:  m/sec : } \\

\dashrightarrow\:\:\sf Initial \:  velocity \: (u)=  72 \:  km/hr \\ \\

\dashrightarrow\:\:\sf Initial \:  velocity \: (u)=  72\times\dfrac{5}{18}  \: m/sec \\  \\

\dashrightarrow\:\:\sf Initial \:  velocity \: (u)=   20 \:  m/sec \\  \\

____________________

\dashrightarrow\:\:\sf Final \: velocity \: (v)=  18 \:  km/hr \\  \\

\dashrightarrow\:\:\sf Final \: velocity \: (v)=  18 \times  \dfrac{5}{18} \: m/sec \\  \\

\dashrightarrow\:\:\sf Final \: velocity \: (v)=   5  \:  m/sec\\  \\

_____________________

\bigstar \: \boxed{\boxed{\sf Acceleration = \dfrac{Change  \: in  \: velocity}{Time \:  taken}}} \:  \bigstar \\\\

:\implies\sf Acceleration = \dfrac{Final \:  velocity - Initial \:  velocity}{Time \:  taken}\\ \\  \\

:\implies\sf Acceleration = \dfrac{5-20}{5} \\ \\  \\

:\implies\sf Acceleration = \dfrac{ - 15}{5} \\ \\  \\

:\implies \underline{ \boxed{\sf Acceleration = -3  \: m/s^{2} }}\\ \\  \\

\therefore\:\underline{\sf{Acceleration \:  produced \:  is  \: -3\:  m/s^{2}}}. \\

Similar questions