Physics, asked by allusai7499, 8 months ago

(a) A wire 4 m long and 0.3mm in diameter is stretched by a force of 100 N. If extension in the wire is 0.3 mm, calculate the potential energy stored in the wire. (b) Find the work done is stretching a wire of cross-section 1mm^(2) and length 2 m through 0.1 mm. Young's modulus for the material of wire is 2.0xx10^(11) Nm^(-2).

Answers

Answered by raytonbae
0

Answer:

Hope it helps u

Explanation:

(a) A wire 4 m long and 0.3mm in diameter is stretched by a force of 100 N. If extension in the wire is 0.3 mm, calculate the potential energy stored in the wire. (b) Find the work done is stretching a wire of cross-section 1mm^(2) and length 2 m through 0.1 mm. Young's modulus for the material of wire is 2.0xx10^(11) Nm^(-2). equils to

Answered by nishantsingh34
0

Explanation:

A model of a rigid body is an idealized example of an object that does not deform under the actions of external forces. It is very useful when analyzing mechanical systems—and many physical objects are indeed rigid to a great extent. The extent to which an object can be perceived as rigid depends on the physical properties of the material from which it is made. For example, a ping-pong ball made of plastic is brittle, and a tennis ball made of rubber is elastic when acted upon by squashing forces. However, under other circumstances, both a ping-pong ball and a tennis ball may bounce well as rigid bodies. Similarly, someone who designs prosthetic limbs may be able to approximate the mechanics of human limbs by modeling them as rigid bodies; however, the actual combination of bones and tissues is an elastic medium.

Similar questions