Physics, asked by sonuvermababina00, 4 months ago

A. A wire is 1m long 0.2mm in diameter and has resistance of 10 ohm. Calculate the
resistivity.​

Answers

Answered by sikugoyal
0

Explanation:

explained above

ans is 3.14 × 10^-3

Attachments:
Answered by Asterinn
19

Given :

  • Length of wire = 1m
  • Diameter = 0.2mm
  • Resistance = 10 ohm

To find :

  • resistivity

Formula used :

 \bf  \large \: R =  \rho \dfrac{l}{a}

 \sf \: Where :- \\ \sf \:  \:  \:  \:  \: R = resistance \\ \sf \:  \:  \:  \:  \: \rho=resistivity \\ \sf \:  \:  \:  \:  \: \:  l = length \: of \: wire \\  \sf \:  \:  \:  \:  \: \: \:  \: a = area \: of \: cross \: section

 \sf \: radius =  \dfrac{diameter}{2}

 \sf1mm =  {10}^{ - 3} m

Solution :

Length of wire = 1m

Diameter = 0.2mm

We know that :-

 \sf \: radius =  \dfrac{diameter}{2}

\sf \therefore radius =  \dfrac{0.2}{2}  = 0.1mm

Now , we know that :-

\sf1mm =  {10}^{ - 3} m

 \therefore\sf0.1mm = 1 \times  {10}^{ - 4} m

Resistance = 10 ohm

 \implies \sf\: R =  \rho \dfrac{l}{a}

 \implies \sf   \: 10  =  \rho  \times \dfrac{1}{\pi {(1 \times {10}^{ - 4})}^{2}   }

\implies \sf   \: 10  =  \rho  \times \dfrac{1}{\pi { {10}^{ - 8}}   }

\implies \sf   \: 10   \times\pi \times  { {10}^{ - 8}} =  \rho

put π = 3.14

\implies \sf   \: 10   \times3.14 \times  { {10}^{ - 8}} =  \rho

 \sf \implies  \:3.14\times  { {10}^{ - 7}} Ohms-meter=  \rho

Answer :

 \bf\:3.14\times  { {10}^{ - 7}} Ohms-meter

Similar questions