Math, asked by farzeenali7881, 10 months ago

A+√(a2-2ax)/a-√(a2-2ax)=b find x

Answers

Answered by MaheswariS
30

\textbf{Given:}

\dfrac{a+\sqrt{a^2-2ax}}{a-\sqrt{a^2-2ax}}=b

\textbf{Given:}

\text{The value of x}

\textbf{Solution:}

\text{Consider,}

\dfrac{a+\sqrt{a^2-2ax}}{a-\sqrt{a^2-2ax}}=b

\implies\,a+\sqrt{a^2-2ax}=b(a-\sqrt{a^2-2ax})

\implies\,a+\sqrt{a^2-2ax}=ab-b\sqrt{a^2-2ax}

\implies\,\sqrt{a^2-2ax}+b\sqrt{a^2-2ax}=ab-a

\implies\,\sqrt{a^2-2ax}(1+b)=ab-a

\implies\,\sqrt{a^2-2ax}=\dfrac{ab-a}{1+b}

\text{Squaring on bothsides, we get}

a^2-2ax=\dfrac{(ab-a)^2}{(1+b)^2}

a^2-2ax=\dfrac{a^2b^2+a^2-2a^2b}{1+b^2+2b}

a^2-\dfrac{a^2b^2+a^2-2a^2b}{1+b^2+2b}=2ax

\dfrac{a^2(1+b^2+2b)-(a^2b^2+a^2-2a^2b)}{1+b^2+2b}=2ax

\dfrac{a^2+a^2b^2+2a^2b-a^2b^2-a^2+2a^2b}{1+b^2+2b}=2ax

\dfrac{2a^2b+2a^2b}{1+b^2+2b}=2ax

\dfrac{4a^2b}{1+b^2+2b}=2ax

\implies\,x=\dfrac{2ab}{1+b^2+2b}

\implies\bf\,x=\dfrac{2ab}{(1+b)^2}

\therefore\textbf{The value of x is $\bf\,\dfrac{2ab}{(1+b)^2}$}

Find more:

If x^4-79x^2+1=0 then find the value of x^3+1/x^3

https://brainly.in/question/15839027

If x = √7+ √3 and xy = 4, then x4 + y4 =​

https://brainly.in/question/16537214

Answered by indranisarmasarkar
32

hope it will help you all

Attachments:
Similar questions