English, asked by sidrambirajdar611, 4 months ago

A &B are both obtuse angles and sinA=5/13 and cosB= -4/5 then find sin(A +B)
1 point
-56/65
56/65
65/56
0​

Answers

Answered by adarsh12ap
1

Answer:

galat questions hai kuoki right angle triangle me ek angle 90° ho gaya aur baki angle 90° ka sum hoga to

Answered by nitinkumar9lm
4

Answer:

The value of  sin(A+B)  is  \frac{-56}{65} .

Explanation:

  • The sine of an angle is equal to the perpendicular divided by the hypotenuse of the right-angled triangle.
  • The cosine of an angle is equal to the base divided by the hypotenuse of the right-angled triangle.
  • The Sine addition formula is used to calculate the sine of the sum of the two angles.

The formula used to solve the problem is:

sin(A+B)=sinA*cosB + cosA*sinB

where, A and B are the angle values.

Step 1:

Given the value of  sinA=\frac{5}{13}.

We know that cosA=\sqrt{1-sin^{2}A }

So, cosA=\sqrt{1-(\frac{5}{13})^{2}  }

cosA=\sqrt{\frac{144}{169}  }

cosA=\frac{12}{13}

Given the value of  cosB=\frac{-4}{5}.

We know that sinB=\sqrt{1-cos^{2}B }

So, sinB=-\sqrt{1-(\frac{-4}{5})^{2}  }

sinB=-\sqrt{\frac{9}{25}  }

sinB=-\frac{3}{5}

Step 2:

Applying the above formula:

sin(A+B)=(\frac{5}{13}) *(\frac{-4}{5})  + (\frac{12}{13}) *(\frac{-3}{5})

sin(A+B)=(\frac{-20}{65} )+(\frac{-36}{65} )

sin(A+B)=\frac{-56}{65}

So, the value of sin(A+B)  is  \frac{-56}{65} .

Similar questions