Math, asked by nirmalkumar21000, 1 year ago

a and 1/a are zeroes of polynomial 4x2-2x+k+7. Find the value of k


poweruffgirls11228: k=15/2

Answers

Answered by FuturePoet
12

Solution :

According to the data provided to us the  polynomial where  a and 1/a are it zeroes 4x^2 - 2x + k + 7 and asked to find the value of k

We Know that ,

Product of the zeroes = \frac{c}{a}

In the quadratic equation given to us ,

" a "Stands for coefficient of x^2 of the quadratic equation

"b" Stands for coefficient of x of the quadratic equation

"c" Stands for constant term of the quadratic equation

Applying the Product of zeroes in order to get subjection ends in finding the value of k

⇒ a × \frac{1}{a} = \frac{K +7}{4}

\frac{K + 7}{4} = 1

⇒ K + 7 = 4

⇒ K = 4 - 7

⇒ K = -3

Therefore for the given quadratic polynomial where two of it's zeroes are a and 1/a the value of k of that is equal to -3

Answered by Anonymous
2

⇨GIVEN:-

 \tt ↠ \red{2x  =  3 +  \sqrt{7} }

⇨FIND:-

 \tt ↠ \blue{ {4x}^{2}  +  \frac{1}{ {x}^{2} } }

⇨SOLUTION:-

 \tt⤳ \green{2x = 3 +  \sqrt{7} }.....(i)

 \tt➾ \frac{1}{x}  =  \frac{2}{3 +  \sqrt{7} }  \\  \tt  \gray{❅ rationalise \: the \: denominator} \\  \tt  ➾ \frac{2}{3 +  \sqrt{7} }  \times  \frac{3 -  \sqrt{7} }{3 -  \sqrt{7} }  \\۞\tt  by \: using \: identity \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}   \: we \: have\\ \tt \frac{2(3  -   \sqrt{7} )}{ {3}^{2} - ( \sqrt{7} {)}^{2}   }   = \frac{2(3  -   \sqrt{7} )}{ 9 - 7  }  \\  \tt➾ \frac{ \cancel2(3  -  \sqrt{7} )}{ \cancel2}   \\  \tt ➾ \pink{ \frac{1}{x}  =  3 -  \sqrt{7}} .....(ii)

adding eq(i) and (ii) we have,

 \tt⪼2x +  \frac{1}{x}  = 3  \cancel{+  \sqrt{7} } + 3  \cancel{-  \sqrt{7} }

 \tt⪼2x +  \frac{1}{x}  = 3   + 3  \\  \tt⪼2x +  \frac{1}{x}  = 6

now, squaring both sides we have,

 \tt \implies {(2x +  \frac{1}{x}) }^{2}  =  {6}^{2}

 \tt ✼by \: using {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \: we \: have

 \tt \implies  {(2x)}^{2}  +  \frac{(1 {)}^{2} }{ {x}^{2} }  + 2 \times 2 \cancel x \times  \frac{1}{ \cancel x }  = 36

 \tt \implies  4 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 4 = 36

 \tt \implies  4 {x}^{2}  +  \frac{1}{ {x}^{2} }   = 36 - 4

 \tt \implies  4 {x}^{2}  +  \frac{1}{ {x}^{2} }   = 32

 \tt Hence,  \huge\boxed{ \bold{ 4 {x}^{2}  +  \frac{1}{ {x}^{2} } = 32}}

Similar questions