Math, asked by preranagandhi451974, 5 months ago

A and B are centres of two circles touching each other externally at M. line AC and line BD .If AD = 6 cm, BC = 9 cm, then
find the lengths of seg AC and seg BD​

Answers

Answered by starboiiii
0

Answer:

Step-by-step explanation:

Given−

P&Qarethecetresoftwocirclesofradius

6cm&9cmrespectively,touchingeachotheratM.

ACisatangenttothebiggercircleatCand

BDisatangenttothesmallercircleatD.

Tofindout−

therespectivelengthsofsegAC&segBD=?

Solution−

AM=AD=6cm(radiiofthesamecircle)&

BM=BC=9cm.(radiiofthesamecircle).

Weknowthattheline,joiningthecentresoftwo

circleswhotoucheachother,passesthroughthe

pointofcontactofthecircles.

∴BothAM&BMlieonthesamelineAB.

SoAB=AM+BM=(6+9)cm=15cm.

Againweknowthatifalinetouchesacircleata

pointthentheradiusthroughthatpointis

perpendiculartothetangentatthatpoint.

∴AD⊥BD&BC⊥AC.

SoΔACBisarightonewithABashypotenuse.

∴ApplyingPythagorasTheorem,weget

AC=

AB

2

−BC

2

=

15

2

−9

2

cm=12cm.

SimilarlyΔADBisarightonewithABashypotenuse.

∴ApplyingPythagorasTheorem,weget

BD=

AB

2

−AD

2

=

15

2

−6

2

cm=3

21

cm.

∴segAC=12cmandsegBD=3

21

cm.

Ans−OptionB.

Similar questions