A and B are complementary angles.then the value of(sinA cosB +cos AsinB- tanA+tanB + sec²A - cot²B) is
Answers
Answered by
17
I assume the last term to be cot^2(B)
Given: A = 90 - B => A+B = 90
=> Sin(A) = Cos(B), tan(A) = Cot (B) , sec^2 (A) = cosec^2 (B)
=>(sinA cosB + cosA sinB) - (tanA tanB) + sec^2(A) - cot^2(B)
= sin(A+B) - (cotB * tanB)+ (cosec^2 B - cot^2 B)
= sin(90) - 1 + 1
= 1
Given: A = 90 - B => A+B = 90
=> Sin(A) = Cos(B), tan(A) = Cot (B) , sec^2 (A) = cosec^2 (B)
=>(sinA cosB + cosA sinB) - (tanA tanB) + sec^2(A) - cot^2(B)
= sin(A+B) - (cotB * tanB)+ (cosec^2 B - cot^2 B)
= sin(90) - 1 + 1
= 1
Answered by
3
Answer:
1
Step-by-step explanation:
I assume the last term to be cot^2(B)
Given: A = 90 - B => A+B = 90
=> Sin(A) = Cos(B), tan(A) = Cot (B) , sec^2 (A) = cosec^2 (B)
=>(sinA cosB + cosA sinB) - (tanA tanB) + sec^2(A) - cot^2(B)
= sin(A+B) - (cotB * tanB)+ (cosec^2 B - cot^2 B)
= sin(90) - 1 + 1
= 1
Similar questions