Math, asked by pratikkaul2004, 3 days ago

a and b are the roots of 2x^2-3x-6=0. Then the equation whose roots are (1÷a) & (1÷b) is.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm \: a \: and \: b \: are \: the \: roots \: of \:  {2x}^{2} - 3x - 6 = 0 \\

We know,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\

\rm\implies \:a + b =  -  \dfrac{( - 3)}{2} =  \dfrac{3}{2}  \\

Also,

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\

\rm\implies \:ab =  \dfrac{ - 6}{2} =  - 3 \\

Now, Consider Sum of the roots, S

\rm \: S = \dfrac{1}{a}  + \dfrac{1}{b} \\

\rm \: S = \dfrac{b + a}{ab}  \\

\rm \: S = \dfrac{a + b}{ab}  \\

\rm \: S =  \: \dfrac{3}{2} \times \dfrac{ - 1}{3}  \\

\rm\implies \:\rm \: S =  \:  -  \:  \dfrac{1}{2}  \\

Now, Product of the roots, P

\rm \: P = \dfrac{1}{a}  \times \dfrac{1}{b}  \\

\rm \: P = \dfrac{1}{ab} \\

\rm \: P = \dfrac{1}{ - 3} \\

\rm\implies \:\rm \: P =  - \dfrac{1}{3} \\

So, the required Quadratic equation is given by

\rm \:  {x}^{2} - Sx + P = 0 \\

\rm \:  {x}^{2} +  \frac{1}{2} x -  \frac{1}{3}  = 0 \\

\rm \:   \frac{ {6x}^{2} + 3x - 2}{6} x  = 0 \\

\rm \:  {6x}^{2} + 3x - 2 = 0 \\

Hence, the quadratic equation is

\color{green}\rm\implies \:\boxed{ \rm{ \: {6x}^{2} + 3x - 2 = 0 \: }} \\

\rule{190pt}{2pt}

Short Cut Trick :-

\sf \:  \alpha  \: and \:  \beta  \: are \: the \: roots \: of \:  {ax}^{2} + bx + c = 0, \: then \\  \sf \: the \: quadratic \: equation \: whose \: roots \: are \:  \dfrac{1}{ \alpha } \: and \:  \dfrac{1}{ \beta } \: is \\  \sf \: \color{green}\boxed{ \rm{ \: {cx}^{2} + bx + a = 0 \: }} \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions