A and B are the two zeroes of polynomials ax²+bx+c. Find the value of
A²+B².
Answers
Answered by
1
Answer:
Let given quadratic polynomial be,
f(x)=ax²+bx+c
Let A and B be the zeroes of f(x).
Then we know that,
A={-b+√(b²-4ac)}/2a
and,
B={-b-√(b²-4ac)}/2a
Now we have,
=A²
=[{-b+√(b²-4ac)}/2a]²
={b²-2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac-2b√(b²-4ac)}/4a²
and
=B²
=[{-b-√(b²-4ac)}/2a]²
={b²+2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac+2b√(b²-4ac)}/4a²
Now,
=A²-B²
={2b²-4ac-2b√(b²-4ac)}/4a²-{2b²-4ac+2b√(b²-4ac)}/4a²
={2b²-4ac-2b√(b²-4ac)-2b²+4ac-2b√(b²-4ac)}/4a²
={-4b√(b²-4ac)}/4a²
=-b√(b²-4ac)/a²
Hence,
A²-B²=-b√(b²-4ac)/a²
Step-by-step explanation:
This is the answer.
Hope it will help you.
Please Mark It Branlliest.
Answered by
0
Step-by-step explanation:
A+B= -b/a
AB= c/a
A²+B²= (A+B)²-2AB
= b²/a² - 2c/a
= (b²-2ac)/a²
Similar questions