Math, asked by Ashishkumar2475, 11 months ago

A and B are two matrices such that AB=A and BA=B then find k id (A+B)^2020=k(A+B)​

Answers

Answered by mscheck980
2

Answer:

A and B are two matrices such that AB=A and BA=B then find k if (A+B)^2020=k(A+B)​

Answer : k = 2^{2019} I

Step-by-step explanation:

A and B are two matrices such that AB=A and BA=B

if AB = A

Multiplying both side by A^{-1}

A^{-1}AB = A^{-1}A

IB = I     [ A^{-1}A = I ]

B = I

again,

BA = B

Multiplying both side by B^{-1}

B^{-1}BA = B^{-1}B

IA = I

A = I

then,

(A+B)^{2020} = k (A + B)

(I + I)^{2020} = k ( I + I )

(2I)^{2020} = k (2I)

(2I)^{2019} = k

k = 2^{2019} I

Therefore, the value of k will be 2^{2019} I .

Answered by sanjeevk28012
1

Given as :

A and B are two matrices such that AB = A and BA = B

(A + B)^{2020}  = k (A + B)

To Find :

The value of k

Solution :

For two matrix A and B

Case I

 A B = A

multiplying both side by A^{-1}

So,  A^{-1} ( A B ) = A^{-1} A

Or,  [ A^{-1} . A ] [ B ] = A^{-1} A

∵      A^{-1} A = I

So,     ( I ) ( B ) = I

Or,            B = \dfrac{I}{I}

∴               B = I               ..........1

Similarly

Case II

 B A = B

multiplying both side by B^{-1}

So,  B^{-1} ( B A ) = B^{-1} B

Or,  [ B^{-1} . B ] [ A ] = B^{-1} B

∵      B^{-1} B = I

So,     ( I ) ( A ) = I

Or,            A = \dfrac{I}{I}

∴               A = I               ..........2

A/Q   (A + B)^{2020}  = k (A + B)

From eq 1 and eq2

      (I + I)^{2020}  = k (I + I)

Or,   (2 I)^{2020}   = k ( 2 I )

Or,    k = \dfrac{(2I)^{2020} }{2I}

Or,    k = (2 I)^{2020 -1}                      [ using base exponent formula ]

∴       k = (2 I)^{2019}

Hence, The value oh k is (2 I)^{2019}    Answer

Similar questions